Current status and progress in nonmarine sequence architecture and sedimentary modelling
SHAO Longyi1, WANG Langlang1,2, LIAN Haojie1, ZHU Hongtao3, ZHU Xiaomin4
1 College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),Beijing 100083,China; 2 Guizhou Institute of Natural Resources Planning and Survey,Guiyang 550004,China; 3 School of Earth Resources,China University of Geosciences(Wuhan),Wuhan 430070,China; 4 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
Abstract Sequence stratigraphy,as a new method for basin analysis,has received great attention from geologists,especially in the study of continental sequence architecture and numerical modelling,which has become an international hot topic. This article summarizes the current research progress of nonmarine sequence architecture at home and abroad,introduces the concepts of “downstream-controlled area” and “upstream-controlled area” and their respective sequence architecture characteristics in recent years abroad. The sequence architecture of “downstream-controlled area” depends on relative sea (lake)level changes,and the “lowstand normal regression”,“transgressive”,“highstand normal regression” and “falling stage” systems tracts are developed,while the sequence architecture of “upstream-controlled area” does not depend on relative sea (lake)level changes,and the high(channel)amalgamation and the low(channel) amalgamation systems tracts are developed. There are also various views on “sequence architecture” in China,and the most representative one should be the classification of “L-type,T-type,TH-type,H-type(E-H type and L-H type)” sequence architectures. The modelling of nonmarine sequences has evolved from being dominated by the physical flume experiments to the current era of combining flume experiments with numerical simulation. Based on the introduction of the development history and research status of sequence numerical simulation at home and abroad,this article focuses on five numerical simulation methods,including SEDPAK forward modelling,SEDSIM forward modelling,three-dimensional forward modelling based on Delft3D model,DIONISOS three-dimensional forward modeling,and sequence numerical modeling based on the N-S equation. The paper has also summarized the sequence architecture of continetal lacustrine basins and the application of numerical modeling in the field of oil and gas exploration and development,and analyzed the current theoretical challenges,difficulties in numerical modeling technology,and future development directions of numerical modelling.
Fund:National Natural Science Foundation of China(Nos. 42321002,41572090)
About author: SHAO Longyi,born in 1964,is a professor and doctoral supervisor at the College of Geoscience and Surveying Engineering,China University of Mining and Technology(Beijing),with main research interests in sedimentology and coal geology. E-mail: ShaoL@cumtb.edu.cn.
Cite this article:
SHAO Longyi,WANG Langlang,LIAN Haojie et al. Current status and progress in nonmarine sequence architecture and sedimentary modelling[J]. JOPC, 2025, 27(1): 1-15.
SHAO Longyi,WANG Langlang,LIAN Haojie et al. Current status and progress in nonmarine sequence architecture and sedimentary modelling[J]. JOPC, 2025, 27(1): 1-15.
[1] 邓宏文,王红亮,王居峰,谢晓军,苏宗富,尚尔杰. 2004. 层序地层构成与层序控砂、控藏的自相似特征: 以三角洲—浊积扇体系为例. 石油与天然气地质,25(5): 491-495. [Deng H W,Wang H L,Wang J F,Xie X J,Su Z F,Shang E J.2004. Self-similarity of constitution of sequence stratigraphy and distribution of sandbodies and lithologic reservoirs: taking delta-turbidite fan system as an example. Oil & Gas Geology,25(5): 491-495] [2] 杜威,纪友亮,李其海,王子涵,席家辉,唐林,高星星. 2020. 不同沉积过程尺度下正演数值模拟研究进展及油气地质意义. 油气地质与采收率,27(2): 62-71. [Du W,Ji Y L,Li Q H,Wang Z H,Xi J H,Tang L,Gao X X.2020. Sedimentary forward numerical modeling at different sedimentary scales: progress and hydrocarbon significance. Petroleum Geology and Recovery Efficiency,27(2): 62-71] [3] 冯文杰,吴胜和,张可,赵文凯,贾凤娟. 2017. 曲流河浅水三角洲沉积过程与沉积模式探讨: 沉积过程数值模拟与现代沉积分析的启示. 地质学报,91(9): 2047-2064. [Feng W J,Wu S H,Zhang K,Zhao W K,Jia F J.2017. Depositional process and sedimentary model of meandering-river shallow delta: insights from numerical simulation and modern deposition. Acta Geological Sinica,91(9): 2047-2064] [4] 高阳东,张向涛,李智高,丁琳,李小平. 2021. 珠江口盆地恩平凹陷北带下—中中新统层序构型及其差异性分析: 对岩性圈闭发育的启示. 地球科学,46(5): 1758-1770. [Gao Y D,Zhang X T,Li Z G,Ding L,Li X P.2021. Variability in sequence stratigraphic architectures of the Lower-Middle Miocene Pearl River Delta,northern Enping sag,Pearl River Mouth Basin: implications for lithological trap development. Earth Science,46(5): 1758-1770] [5] 国景星,刘媛. 2008. 济阳坳陷新近系层序地层构型. 中国石油大学学报(自然科学版),32(1): 1-4. [Guo J X,Liu Y.2008. Model of sequence stratum of Neogene of Jiyang depression. Journal of China University of Petroleum(Edition of Natural Science),32(1): 1-4] [6] 贺婷婷,段太忠,赵磊. 2018. 塔河油田T区三叠系三角洲砂体沉积过程数值模拟. 见: 第十五届全国古地理学及沉积学学术会议摘要集,2. [He T T,Duan T Z,Zhao L. 2018. Numerical simulation of sedimentary process of Triassic delta sand body in T block of Tahe Oilfield. In: Abstracts of the 15th National Conference on Palaeogeography and Sedimentology,2] [7] 胡受权. 1998. 断陷湖盆陆相层序中体系域构型及其模式新论. 西安石油学院学报(自然科学版),13(6): 7-13,17. [Hu S Q.1998. On the structure and mode of the system tracts of a continental sequence in faulted lake basin. Journal of Xi'an Shiyou University(Natural Science Edition),13(6): 7-13,17] [8] 胡受权. 2000. 湖平面变化及物源供给对陆相层序影响机理的计算机模拟. 断块油气田,7(6): 1-4. [Hu S Q.2000. Computer simulation on influencing mechanism of lacustrine level change and sedimentary source recharge in terrigenous sequence. Fault-Block Oil & Gas Field,7(6): 1-4] [9] 纪友亮,周勇. 2020. 层序地层学. 北京: 中国石化出版社,267. [Ji Y L,Zhou Y. 2020. Sequence Stratigraphy. Beijing: China Petrochemical Press,267] [10] 纪友亮,张善文,王永诗,黄建军. 2008. 断陷盆地油气汇聚体系与层序地层格架之间的关系研究. 沉积学报,26(4): 617-623. [Ji Y L,Zhang S W,Wang Y S,Huang J J.2008. Study on the relationship between oil-gas convergence system and sequence stratigraphic framework in fault basin. Acta Sedimentologica Sinica,26(4): 617-623] [11] 纪友亮,曹瑞成,蒙启安,张革,渠永红. 2009. 塔木察格盆地塔南凹陷下白垩统层序结构特征及控制因素分析. 地质学报,83(6): 827-835. [Ji Y L,Cao R C,Meng Q A,Zhang G,Qu Y H.2009. Analysis of sequence structure and its controlling factors in lower Cretaceous in Tanan Depression,Tamtsag Basin. Acta Geologica Sinica,83(6): 827-835] [12] 姜在兴. 1996. 层序地层学原理及应用. 北京: 石油工业出版社. [Jiang Z X. 1996. Principles and Applications of Sequence Stratigraphy. Beijing: Petroleum Industry Press] [13] 姜在兴,向树安,陈秀艳,张锐锋. 2009. 淀南地区古近系沙河街组层序地层模式. 沉积学报,27(5): 931-938. [Jiang Z X,Xiang S A,Chen X Y,Zhang R F.2009. The sequence stratigraphy model of Shahejie Formation in Diannan Area. Acta Sedimentologica Sinica,27(5): 931-938] [14] 李趁义. 2005. 东营三角洲滑塌浊积岩形成机制与高频基准面旋回控砂模式研究. 中国地质大学(北京)博士学位论文. [Li C Y.2005. Study on the forming mechanism of the slumped turbidite and the controlling sandbody model of high frequency base-level cycle of Dongying Delta. Doctoral dissertation of China University of Geosciences(Beijing)] [15] 李继红,魏魁生,厉大亮,张守鹏,郝运轻,邱以刚. 2002. 非海相沉积层序的成因和构型特征. 沉积学报,20(3): 409-415. [Li J H,Wei Q S,Li D L,Zhang S P,Hao Y T,Qiu Y G.2002. Genesis and configurational characteristics of non-marine sedimentary sequences. Acta Sedimentologica Sinica,20(3): 409-415] [16] 李树青,李和,徐伟,董志刚. 2007. 松辽盆地南部下白垩统层序构型及沉积特征. 天然气工业,27(4): 36-39,150. [Li S Q,Li H,Xu W,Dong Z G.2007. Sequence architectures and sedimentary features of Lower Cretaceous in the southern Songliao Basin. Natural Gas Industry,27(4): 36-39,150] [17] 林畅松,刘景彦,胡博. 2010. 构造活动盆地沉积层序形成过程模拟: 以断陷和前陆盆地为例. 沉积学报,28(5): 868-874. [Lin C S,Liu J Y,Hu B.2010. Computer simulation on the Formation of depositional sequences in tectonic active Basin: a case study on rift and foreland basins. Acta Sedimentologica Sinica,28(5): 868-874] [18] 林承焰,陈柄屹,任丽华,董春梅,张宪国. 2023. 沉积数值模拟研究现状及实例. 地质学报,97(8): 2756-2773. [Lin C Y,Chen B Y,Ren L H,Dong C M,Zhang X G.2023. A review of depositional numerical simulation and a case study. Acta Geologica Sinica,97(8): 2756-2773] [19] 刘忠保,赖志云. 1994. 辫状河—扇三角洲形成及演变的水槽实验. 大庆石油地质与开发,13(2): 58-62,77-78. [Liu Z B,Lai Z Y.1994. A flume experiment on formation and evolution of braided stream-fan delta. Petroleum Geology & Oilfield Development in Daqing,13(2): 58-62,77-78] [20] 刘忠保,赖志云,汪崎生. 1995. 湖泊三角洲砂体形成及演变的水槽实验初步研究. 石油实验地质,17(1): 34-41. [Liu Z B,Lai Z Y,Wang Q S.1995. Flume-experimental study on the formation and evolution of lake delta sandbody. Petroleum Geology & Experiment,17(1): 34-41] [21] 邵龙义,徐小涛,王帅,王东东,高迪,王学天,鲁静. 2021. 中国含煤岩系古地理及古环境演化研究进展. 古地理学报,23(1): 19-38. [Shao L Y,Xu X T,Wang S,Wang D D,Gao D,Wang X T,Lu J.2021. Research progress of palaeogeography and palaeoenvironmental evolution of coal-bearing series in China. Journal of Palaeogeography(Chinese Edition),23(1): 19-38] [22] 王华. 2008. 层序地层学基本原理、方法与应用. 北京: 北京大学出版社,383. [Wang H. 2008. Basic Principles,Methods,and Applications of Sequence Stratigraphy. Beijing: Peking University Press,383] [23] 吴恒. 2020. 裂谷盆地构造沉积演化数值模拟及层序响应的综合研究. 中国石油大学(北京)博士学位论文. [Wu H.2020. An integrated study of rift basin model and stratigraphic response to spatiotemporally varying tectonic forcing. Doctoral dissertation of China University of Petroleum(Beijing)] [24] 谢晓军,邓宏文. 2008. 霸县凹陷古近系层序地层构型. 岩性油气藏,20(2): 74-77,118. [Xie X J,Deng H W.2008. Paleogene sequence stratigraphic configuration in Baxian sag. Lithologic Reservoirs,20(2): 74-77,118] [25] 熊天鹤. 2018. 泥质三角洲沉积特征及沉积过程模拟. 东北石油大学硕士学位论文. [Xiong T H.2018. Sedimentary characteristics and simulation of deposition process of the muddy delta. Masteral dissertation of Northeast Petroleum University] [26] 徐东浩,秦兰芝,李峻颉,蔡坤,谢晶晶. 2024. 西湖凹陷平北斜坡带平湖组层序构型差异及控砂模式. 地质科技通报,43(4): 154-166. [Xu D H,Qin L Z,Li J J,Cai K,Xie J J.2024. Sequence stratigraphic architectures and sand-body distribution models of the Pinghu Formation in the Pingbei slope belt of the Xihu Depression. Bulletin of Geological Science and Technology,43(4): 154-166] [27] 徐伟,房磊,张新叶,王鹏飞,杨希濮. 2019. 乌干达K油田扇三角洲沉积正演模拟与应用. 地球科学,44(2): 513-523. [Xu W,Fang L,Zhang X Y,Wang P F,Yang X P.2019. Sedimentary forward simulation and application of fan delta in K Oil Field in Uganda. Earth Science,44(2): 513-523] [28] 张春生,刘忠保,施冬,程启贵,张荣彬,高春宁,李建雄. 2002. 涌流型浊流形成及发展的实验模拟. 沉积学报,20(1): 25-29. [Zhang C S,Liu Z B,Shi D,Cheng Q G,Zhang R B,Gao C N,Li J X.2002. The simulation experiment of surge-type turbidity current formation and development. Acta Sedimentologica Sinica,20(1): 25-29] [29] 张威,李磊,邱欣卫,龚广传,程琳燕,高毅凡,扬志鹏,杨蕾. 2022. A/S 对断陷湖盆三角洲时空演化的控制及数值模拟: 以珠江口盆地陆丰22洼古近系文昌组为例. 岩性油气藏,34(3): 131-141. [Zhang W,Li L,Qiu X W,Gong G C,Cheng L Y,Gao Y F,Yang Z P,Yang L.2022. A/S control on spatiotemporal evolution of deltas in rifted lacustrine basin and its numerical simulation: a case study of paleogene Wenchang Formation in Lufeng 22 subsag,Pearl River Mouth Basin. Lithologic Reservoirs,34(3): 131-141] [30] 张文彪,段太忠,刘彦锋,王鸣川,廉培庆,赵磊. 2019. 定量地质建模技术应用现状与发展趋势. 地质科技情报,38(3): 264-275. [Zhang W B,Duan T Z,Liu Y F,Wang M C,Lian P Q,Zhao L.2019. Application status and development trend of quantitative geological modeling. Bulletin of Geological Science and Technology, 38(3): 264-275] [31] 张自力, 李琦, 朱筱敏, 谈明轩, 张锐锋, 曹兰柱, 李凤勋, 单帅强. 2023. 陆相断陷湖盆重力流湖底扇沉积与地震响应特征分析: 以渤海湾盆地霸县凹陷古近系沙河街组为例. 古地理学报,25(5): 1049-1068. [Zhang Z L,Li Q,Zhu X M,Tan M X,Zhang R F,Cao L Z,Li F X,Shan S Q.2023. Analysis of sedimentary characteristics and seismic response of gravity flow sublacustrine fan in continental faulted lake basins: a case study of the Paleogene Shahejie Formation in Baxian Sag,Bohai Bay Basin. Journal of Palaeogeography(Chinese Edition),25(5): 1049-1068] [32] 郑荣才,周祺,王华,李凤杰. 2009. 鄂尔多斯盆地长北气田山西组2段高分辨率层序构型与砂体预测. 高校地质学报,15(1): 69-79. [Zheng R C,Zhou Q,Wang H,Li F J.2009. The sequence architecture and sandbody predicition of the second member of Shanxi Formation in Changbei Gas Field,Ordos Basin. Geological Journal of China Universities,15(1): 69-79] [33] 朱红涛,Liu Ke-yu,杜远生,何生. 2007. 层序地层学模拟研究进展及趋势. 地质科技情报,26(5): 27-34. [Zhu H T,Liu K Y,Du Y S,He S.2007. Progress and developing tendency of sequence stratigraphy simulation. Geological Science and Technology Information,26(5): 27-34] [34] 朱红涛,杨香华,舒誉,吴静,李敏. 2012. 陆相湖盆层序构型及其岩性预测意义: 以珠江口盆地惠州凹陷为例. 地学前缘,19(1): 32-39. [Zhu H T,Yang X H,Shu Y,Wu J,Li M.2012. The sequence stratigraphic architecture of continental lake basin and its significance on lithofacies prediction: taking Huizhou sag in Zhujiangkou Basin as an example. Earth Science Frontiers,19(1): 32-39] [35] 朱筱敏,康安,王贵文. 2003. 陆相坳陷型和断陷型湖盆层序地层样式探讨. 沉积学报,21(2): 283-287. [Zhu X M,Kang A,Wang G W.2003. Sequence stratigraphic models of depression and faulted-down lake basins. Acta Sedimentologica Sinica,21(2): 283-287] [36] 朱筱敏,王华,朱红涛,邵龙义,纪友亮. 2023. 陆相层序地层学研究进展及发展关注. 石油学报,44(8): 1382-1398. [Zhu X M,Wang H,Zhu H T,Shao L Y,Ji Y L.2023. Research progress and development concerns of continental sequence stratigraphy. Acta Petrolei Sinica,44(8): 1382-1398] [37] 朱筱敏. 2022. 层序地层学(第二版).山东东营: 中国石油大学出版社,412. [Zhu X M. 2022. Sequence Stratigraphy(2nd ed). Shandong Dongying: China University of Petroleum Press,412] [38] Benavente C A,Bohacs K M.2024. Advances in limnogeology: the lake-basin-type model revisited 25 years after anomalies,conundrums and upgrades. The Depositional Record,10: 748-792. [39] Blum M D,Tornqvist T E.2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology,47: 2-48. [40] Boyd R,Diessel C F K,Wadsworth J,Leckie D,Zaitlin B A. 2000. Organization of non marine stratigraphy. In: Boyd R,Diessel C F K,Francis S(eds). Advances in the Study of the Sydney Basin. Proceedings of the 34th Newcastle Symposium. University of Newcastle,Callaghan,New South Wales,Australia: 1-14. [41] Bristow C S,Best J L. 1993. Braided rivers: perspectives and problems. In: Best J L,Bristow C S(eds). Braided Rivers. Geological Society Special Publication, 75: 1-11. [42] Burgess P M.2001. Modeling carbonate sequence development without relative sea-level oscillations. Geology,29(12): 1127-1130. [43] Burgess P M.2016. Identifying ideal stratigraphic cycles using a quantitative optimization method. Geology,44(6): 443-446. [44] Burgess P M,Allen P.2014. A forward-modelling analysis of the controls on sequence stratigraphical geometries. Geological Society London Special Publications,103(1): 9-24. [45] Burgess P M,Lammers H,van Oosterhout C,Granjeon D.2006. Multivariate sequence stratigraphy: tackling complexity and uncertainty with stratigraphic forward modeling,multiple scenarios,and conditional frequency maps. AAPG Bulletin,90(12): 1883-1901. [46] Carbonneau P E,Bergeron N E.2000. The effect of bedload transport on mean and turbulent flow properties. Geomorphology,35: 267-278. [47] Carroll A R,Bohacs K M.1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology,27(2): 99-102. [48] Catuneanu O.2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier,375. [49] Catuneanu O. 2017. Sequence stratigraphy: guidelines for a standard methodology. In: Montenari M(ed). Stratigraphy and Timescales. vol. 2. Academic Press, UK: 1-57. [50] Catuneanu O.2019. Model-independent sequence stratigraphy. Earth-Science Reviews, 188: 312-388. [51] Catuneanu O,Zecchin M.2016. Unique vs. non-unique stratal geometries: relevance to sequence stratigraphy. Marine and Petroleum Geology, 78: 184-195. [52] Catuneanu O,Galloway W E,Kendall C G S C,Miall A D,Posamentier H W,Strasser A,Tucker M E.2011. Sequence stratigraphy: methodology and nomenclature. Newsletter Stratigraphy, 44(3): 173-245. [53] Costello W R,Southard J B.1981. Flume experiments on lower-flow-regime bed forms in coarse sand. Journal of Sedimentary Research,51(3): 849-864. [54] Cross T A,Lessenger M A. 1999. Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations. In: Harbaugh J W,Watney W L,Rankey E C,Goldstein,R H,Franseen E K(eds). Numerical Experiments in Stratigraphy. Recent Advances in Stratigraphic and Sedimentologic Computer Simulations,62: 69-83. [55] Deacon G F.1894. Discussion of estuaries by Partiotz H L. Institution Civil Engineers(London)Proc,118: 47-189. [56] Embry A F,Johannessen E P. 1992. T-R sequence stratigraphy,facies analysis and reservoir distribution in the uppermost Triassic-Lower Jurassic succession,western Sverdrup Basin,Arctic Canada. In: Vorren T O,Bergsager E,Dahl-Stamnes O A,Holter E,Johansen B,Lie E,Lund T B(eds). Arctic Geology and Petroleum Potential. Norwegian Petroleum Society(NPF),2: 121-146. [57] Dubrule G.1986. A review of stochastic models for petroleum reservoirs. Geostatistics,1(2): 233-247. [58] Galloway W E.1989. Genetic stratigraphic sequences in basin analysis,I. Architecture and genesis of flooding-surface bounded depositional units. AAPG Bulletin, 73: 125-142. [59] Gilbert G K.1895. Sedimentary measurement of geologic time. Journal of Geology,3: 121-127. [60] Gilbert G K.1914. The Transportation of Debris by Running Water. U.S. Geology Survey Profession Paper, 86: 263-367. [61] Granjeon D,Joseph P. 1999. Concepts and applications of a 3D multiple lithology,diffusive model in stratigraphic modeling. In: Harbaugh J W,Watney W L,Rankey E C,Goldstein,R H,Franseen E K(eds). 2001. Numerical Experiments in Stratigraphy. Recent Advances in Stratigraphic and Sedimentologic Computer Simulations,62: 197-210. [62] Griffiths C M,Dyt C,Paraschiviou E,Ciu K. 2001. Sedsim in hydrocarbon exploration. In: Merriam D F,Davis J C(eds). Geological modeling and simulation: sedimentary systems: computer applications in the earth sciences. Academic Publishers: 71-97. [63] Harbaugh J W.1966. Mathematical simulation of marine sedimentation with mM 7090n094 computers. Kansas Geology Survey Computer Contr, I: 52. [64] Harbaugh J W,Bonham-Carter G.1970. Computer simulation in geology. New York: Wiley Inters Science,575. [65] Harris D G.1975. The role of geology in reservoir simulation studies. JPT,27: 625-632. [66] Helland-Hansen W,Kendall C G St C,Lerche I,Nakayama K.1988. A simulation of continental basin margin sedimentation in response to crustal movements,eustatic sea level change,and sediment accumulation rates. Mathematical Geology,20(7): 777-802. [67] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract-deposition during base-level fall. Sedimentary Geology,81(1-2): 1-9. [68] Jordan T E,Flemings P B.1991. Large-scale stratigraphic architecture,eustatic variation,and unsteady tectonism: a theoretical evaluation. Journal of Geophysical Research Atmosheres,96(B4): 6681-6699. [69] Journel A G. 1994. Stochastic Modeling and neostatistics: principles,methods,and case studies. In: Chamber Y. Geostatistics and reservoir geology. AAPG Computer Application in Geology: 379. [70] Kaufman J.1994. Numerical-models of fluid-flow in carbonate platforms-implications for dolomitization. Journal of Sedimentary Research Section A-Sedimentary Petrology and Processes,64(1): 128-139. [71] Leckie D A,Boyd R.2003. Towards a nonmarine sequence stratigraphic model. American Association of Petroleum Geologists Annual Convention. Salt Lake City,11-14 May 2003,Official Program,12: A101. [72] Liu K Y,Liang T C K L,Paterson L,Kendall C G S C. 1998. Computer simulation of the influence of basin physiography on condensed section deposition and maximum flooding. Sedimentary Geology,122: 181-191. [73] Lorenz E N. 1993. The Essence of Chaos. Washington: University of Washington Press. [74] Miall A D.1992. The Exxon global cycle chart: an event for every occasion?Geology,20: 787-790. [75] Mitchum Jr R M,Vail P R,Thompson III S. 1977. Seismic stratigraphy and global changes of sea level,Part 2: the depositional sequence as a basic unit for stratigraphic analysis. In: Payton C E(ed). Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir,26: 53-62. [76] NACSN(North American Commission on Stratigraphic Nomenclature). 1983. North American Stratigraphic Code. AAPG Bulletin,67: 841-875. [77] Nummedal D,Riley G W,Templet P L. 1993. High-resolution sequence architecture: a chronostratigraphic model based on equilibrium profile studies. In: Posamentier H W,Summerhayes C P,Haq B U,Allen G P(eds). Sequence Stratigraphy and Facies Associations. International Association of Sedimentologists,Special Publication,18: 55-68. [78] Posamentier H W,Vail P R. 1988. Eustatic controls on clastic deposition. Ⅱ. Sequence and systems tract models. In: Wilgus C K,Hastings B S,Kendall C G S C,Posamentier H W,Ross C A,van Wagoner J C(eds). Sea Level Changes-an integrated approach. SEPM Special Publication,42: 125-154. [79] Prince G D,Burgess P M.2013. Numerical modeling of falling-stage topset aggradation: implications for distinguishing between forced and unforced regressions in the geological record. Journal of Sedimentary Research,83(9-10): 767-781. [80] Schumm S A,Khan H R.1971. Experimental study of channel patterns. Nature,233(5319): 407-409. [81] Shanley K W,McCabe P J.1994. Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin,78(4): 544-568. [82] Song Y K,Yin T J,Zhang C M,Wang N N,Hou X Y.2020. Application of sedimentary numerical simulation in sequence stratigraphy study. Arabian Journal of Geosciences,13: 267. [83] Steckler M S D J,Reynolds B J,Coakley B A,Swfr R D,Jarrard.1993. Modeling passive margin sequence stratigraphy. In Posamentier H W,Summer-hayes C P,Haq B U,Ajiep G P(eds). Sequcnce straigraphy and facies associations. International Association of Sedimentologists Special Publication,18: 19-41. [84] Strobel J,Cannon R,Kendall C St C,Biswas G,Bezdek J.1989. Interactive(SEDPAK)simulation of clastic and carbonate sediments in the shelf to basin settings. Computer Geoscience,15: 1279-1290. [85] Tetzlaff D M,Harbaugh J W.1989. Simulating Elastic Sedimentation. New York: Van Nostrand Reinhold,202. [86] Thorne J A,Swift D J P. 1991. Sedimentation on continental margins,Ⅵ. A regime model for depositional sequences,the component systems tracts,and bounding surfaces. In: Swift D J P,Oertel G F,Tillman R W,Thorne J A(eds). Shelf Sand and Sandstone Bodies. International Association of Sedimentologists,Special Publication,14: 189-255. [87] Vail P R,Mitchum R M,Todd R G. 1977. Seismic stratigraphy and global changes of sea-level. In: Payton C E. Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir,26: 49-211. [88] Waltham D.1992. Mathematical modelling of sedimentary basin processes. Marine and Petroleum Geology,9(3): 265-273. [89] Wijbenga J H A,Klaassen G J.1983. Changes in bedform dimensions under unsteady flow conditions in a straight flume. Modern and Ancient Fluvial Systems,6: 35-48. [90] Zavala C,Liu H Q,Li X B,Valentin T,Yang L,Mariano A,Agustin Z.2024. High-frequency lacustrine sequence stratigraphy of clastic lakes: lessons from ancient successions. Journal of Palaeogeography,13(4): 621-645. [91] Zhang J Y,Burgess P M,Granjeon D,Steel R.2019. Can sediment supply variations create sequences?Insights from stratigraphic forward modelling. Basin Research,31(2): 274-289. [92] Zhang Z L,Zhu X M,Zhang R F,Li Q,Shen M,Zhang J.2020. To establish a sequence stratigraphy in lacustrine rift basin: a 3D seismic case study from Paleogene Baxian sag in Bohai Bay Basin,China. Marine and Petroleum Geology,120: 104505. [93] Zhu H T,Liu K Y,Yang X H,Liu Q H.2013. Sedimentary controls on the sequence stratigraphic architecture in intra-cratonic basins: an example from the Lower Permian Shanxi Formation,Ordos Basin,northern China. Marine and Petroleum Geology,45: 42-54.