1 Oil and Gas Exploration Management Center,Shengli Oilfield Company,Sinopec,Shandong Dongying 257015,China; 2 Exploration and Development Research Institute,Shengli Oilfield Company,Sinopec,Shandong Dongying 257015,China; 3 Postdoctoral Workstation,Shengli Oilfield Company,Sinopec,Shandong Dongying 257015,China; 4 Key Laboratory of Shale Oil/Gas Exploration and Production,Sinopec,Shandong Dongying 257015,China; 5 State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Efficient Development,Beijing 102206,China
Abstract Due to the evident correlation between fluctuations in dolomitization intensity in Phanerozoic geological strata and significant geological events throughout Earth's history,it is increasingly important to understand the mechanisms underlying these fluctuations in relation to long-term magnesium and carbon cycles in terrestrial and marine environments,atmospheric processes,and climate change over extended periods. In this study,time series analysis and coupling analysis are analyzed based on high-resolution X-ray diffraction data to reveal the slope amplitude modulation cycle recorded by the deep-water dolomite cycle of the Shahejie Formation in the Bohai Bay Basin. Combining the Quaternary dolomite cycle in Van Lake,Turkey,with the dolomitization events during the Permian-Triassic period,we discussed the coupling relationship between the fluctuations in deep-water dolomitization intensity over the Phanerozoic eon and the amplitude of various Earth orbital parameters across different time scales. Building on the analysis of the salinity evolution characteristics of the Sha 3 submember,it is proposed that the amplitude-modulation effect of Earth's orbital parameters may influence microbial ecological stress and the fluctuations in temperature and pH of fluids through changes in climate and environmental factors. This,in turn,plays a significant role in regulating orbital deep-water dolomitization intensity during the Phanerozoic eon. This study provides a novel perspective for the exploration of the “dolomite problem”.
Fund:Post-doctoral Fund of Shengli Oilfield(No. YKB2201),Project of Shengli Oilfield Branch Company(No.YGK2204),and Project of Key Laboratory of Sinopec(No. KLP23003)
Corresponding Authors:
MIAO Zhuowei,born in 1991,Ph.D.,is engaged in research on sedimentology. E-mail: mzwem@qq.com.
About author: ZHANG Kuihua,born in 1972,Ph.D.,professor-level senior engineer,is engaged in research on petroleum geology. E-mail: zhangkuihua.slyt@sinopec.com.
Cite this article:
ZHANG Kuihua,ZHANG Pengfei,MIAO Zhuowei et al. Amplitudes of Earth's orbital parameters and fluctuations of deep-water dolomitization[J]. JOPC, 2025, 27(1): 141-152.
ZHANG Kuihua,ZHANG Pengfei,MIAO Zhuowei et al. Amplitudes of Earth's orbital parameters and fluctuations of deep-water dolomitization[J]. JOPC, 2025, 27(1): 141-152.
[1] 金章东,张飞,李福春,陈留美,肖军,贺茂勇. 2013. 青海湖湖水性质、颗粒物沉积通量季节和年际变化: 来自沉积物捕获器的研究. 地球环境学报, 4(3): 1306-1313. [Jin Z D,Zhang F,Li F C,Chen L M,Xiao J,He M Y.2013. Seasonal and interannual variations of the lake water parameters and particle flux in Lake Qinghai: a time-series sediment trap study. Journal of Earth Environment, 4(3): 1306-1313] [2] 沈青. 2011. 地表水中藻类代谢对pH和含氧量影响分析. 环境科学与技术,34(S2): 261-262. [Shen Q.2011. Analyses on the influence of algae metabolism on pH and DO in surface water. Environmental Science & Technology,34(S2): 261-262] [3] 许汇源,侯读杰,Simon C. George,刘全有. 2020. 东营凹陷沙河街组泥页岩中正丙基胆甾烷与异海绵烷的研究: 硫循环对有机质富集的影响. 南京大学学报(自然科学), 56(3): 366-381. [Xu H Y,Hou D J,George S C,Liu Q Y.2020. Study on n-propylcholestane and isorenieratane in the Shahejie black shales: sulfur control on organic matter enrichment. Journal of Nanjing University(Natural Science), 56(3): 366-381] [4] 朱光有,金强,张善文,张林晔,郭长春. 2004. 渤南洼陷盐湖—咸水湖沉积组合及其油气聚集. 矿物学报, 24(1): 25-30. [Zhu G Y,Jin Q,Zhang S W,Zhang L Y,Guo C C.2004. Salt lake-saline lake sedimentary combination and petroleum accumulation in the Bonan sag. Acta Mineralogica Sinica, 24(1): 25-30] [5] Alsharhan A S, St C Kendall C G.2003. Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth-Science Reviews, 61(3-4): 191-243. [6] Arvidson R S,Mackenzie F T.1999. The dolomite problem: control of precipitation kinetics by temperature and saturation state. American Journal of Science, 299(4): 257-288. [7] Arvidson R S,Guidry M W,MacKenzie F T,Mucci A,Luther G W.2011. Dolomite controls on Phanerozoic seawater chemistry. Aquatic Geochemistry, 17(4-5): 735-747. [8] Balog A,Read J F,Haas J.1999. Climate-controlled early dolomite,Late Triassic cyclic platform carbonates,Hungary. Journal of Sedimentary Research, 69: 267-282. [9] Berger A.1988. Milankovitch theory and climate. Reviews of Geophysics, 26(4): 624-657. [10] Burns S J,McKenzie J A,Vasconcelos C.2000. Dolomite formation and biogeochemical cycles in the Phanerozoic. Sedimentology, 47: 49-61. [11] Çağatay M N,Öğretmen N,Damcı E,Stockhecke M,Sancarü,Eriş K K,Özeren S,Litt T,Anselmetti F S.2014. Lake level and climate records of the last 90 ka from the Northern Basin of Lake Van,eastern Turkey. Quaternary Science Reviews, 104: 97-116. [12] Cheng J R,Meng X Q,Zhang E L,Jiang Q F,Ni Z Y,Ji J F.2021. An Early Holocene primary dolomite layer of abiotic origin in lake Sayram,central Asia. Geophysical Research Letters, 48: e2021G-e96309G. [13] Compton J S. 1988. Sediment composition and precipitation of dolomite and pyrite in the Neogene Monterey and Sisquoc Formations,Santa Maria Basin area,California. In: Shukla V,Baker P A(eds). Sedimentology and Geochemistry of Dolostones. Tulsa: Society of Economic Paleontologists and Mineralogists Special Publication,53-64. [14] Deelman J C.1999. Low-temperature nucleation of magnesite and dolomite. Neues Jahrbuch für Mineralogie. Monatshefte,7: 289-302. [15] Diloreto Z A,Garg S,Bontognali T R R,Dittrich M.2021. Modern dolomite formation caused by seasonal cycling of oxygenic phototrophs and anoxygenic phototrophs in a hypersaline sabkha. Scientific Reports, 11: 4170. [16] Gregg J M,Bish D L,Kaczmarek S E,Machel H G.2015. Mineralogy,nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology, 62(6): 1749-1769. [17] Hao F,Zhou X H,Zhu Y M,Zou H Y,Yang Y Y.2010. Charging of oil fields surrounding the Shaleitian uplift from multiple source rock intervals and generative kitchens,Bohai Bay Basin,China. Marine and Petroleum Geology, 27(9): 1910-1926. [18] Hays J D,Imbrie J,Shackleton N J.1976. Variations in the earth's orbit: Pacemaker of the ice ages. Science, 194(4270): 1121-1132. [19] Hinnov L A.2000. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences, 28(1): 419-475. [20] Hobbs F W C,Xu H F.2020. Magnesite formation through temperature and pH cycling as a proxy for lagoon and playa paleoenvironments. Geochimica et Cosmochimica Acta, 269: 101-116. [21] Holland H D,Zimmermann H.2000. The dolomite problem Revisited. International Geology Review, 42: 481-490. [22] Kaczmarek S E,Gregg J M,Bish D L,Machel H G,Fouke B W,Macneil A J,Lonnee J,Wood R.2017. Dolomite,very high-magnesium calcite,and microbes: implications for the microbial model of dolomitization. Special Publication-Society for Sedimentary Geology, 109: 7-20. [23] Land L S,Mackenzie F T.1998. Failure to precipitate dolomite at 25℃ from dilute solution despite 1000-fold oversaturation after 32 years. Aquatic Geochemistry, 4(3-4): 361-368. [24] Landmann G,Reimer A,Kempe S.1996. Climatically induced lake level changes at Lake Van,Turkey,during the Pleistocene/Holocene Transition. Global Biogeochemical Cycles, 10(4): 797-808. [25] Laskar J,Robutel P,Joutel F,Gastineau M,Correia A C M,Levrard B.2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 428(1): 261-285. [26] Li M S,Hinnov L,Kump L.2019. Acycle: Time-series analysis software for paleoclimate research and education. Computers & Geosciences, 127: 12-22. [27] Li M S,Ogg J,Zhang Y,Huang C J,Hinnov L,Chen Z Q,Zou Z Y.2016. Astronomical tuning of the end-Permian extinction and the Early Triassic Epoch of South China and Germany. Earth and Planetary Science Letters, 441: 10-25. [28] Li M T,Song H J,Algeo T J,Wignall P B,Dai X,Woods A D.2018. A dolomitization event at the oceanic chemocline during the Permian-Triassic transition. Geology, 46: 1043-1046. [29] Li M T,Wignall P B,Dai X,Hu M Y,Song H J.2021. Phanerozoic variation in dolomite abundance linked to oceanic anoxia. Geology,49: 698-702. [30] Liang C,Cao Y C,Jiang Z X,Wu J,Song G Q,Wang Y S.2017. Shale oil potential of lacustrine black shale in the Eocene Dongying Depression: implications for geochemistry and reservoir characteristics. AAPG Bulletin, 101(11): 1835-1858. [31] Liebermann O.1967. Synthesis of dolomite. Nature, 213: 241-245. [32] Litt T,Pickarski N,Heumann G,Stockhecke M,Tzedakis P C.2014. A 600,000 year long continental pollen record from Lake Van,eastern Anatolia(Turkey). Quaternary Science Reviews, 104: 30-41. [33] Liu D,Xu Y Y,Papineau D,Yu N,Fan Q G,Qiu X,Wang H M.2019. Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta, 247: 83-95. [34] Lumsden D N.1985. Secular variations in dolomite abundance in deep marine sediments. Geology, 13: 766-769. [35] Ma Y Q,Fan M J,Li M S,Ogg J G,Zhang C,Feng J,Zhou C H,Liu X F,Lu Y C,Liu H M,Eldrett J S,Ma C.2023. East Asian lake hydrology modulated by global sea-level variations in the Eocene warmhouse. Earth and Planetary Science Letters, 602: 117925. [36] Manche C J,Kaczmarek S E.2019. Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: a case study from the Cretaceous of central Texas,USA. Geology, 47(6): 586-590. [37] Manche C J,Kaczmarek S E.2021. A global study of dolomite stoichiometry and cation ordering through the Phanerozoic. Journal of Sedimentary Research, 91(5): 520-546. [38] McCormack J,Bontognali T R R,Immenhauser A,Kwiecien O.2018. Controls on cyclic formation of Quaternary early diagenetic dolomite. Geophysical Research Letters, 45(8): 3625-3634. [39] McKenzie J A,Vasconcelos C.2009. Dolomite Mountains and the origin of the dolomite rock of which they mainly consist: historical developments and new perspectives. Sedimentology, 56(1): 205-219. [40] Miao Z W,Gong E P,Zhang Y L,Guan C Q,Huang W T.2020. Burial dolomitization,the genesis of dolomite in the Dapu Formation(Upper Carboniferous),Guixinan area,Youjiang Basin,Southwest China: petrologic and geochemical evidence. Carbonates and Evaporites, 35: 57. [41] Miao Z W,Zhang K H,Zhang P F,Zhang Q,Liu H M,Liu N,Zhang S,Teng J B,Li B,Fang Z W,Yu J F,Yu J J.2023. Multiple proxies demonstrate the mechanism of dolomitization variations during global warming periods. Geosystems and Geoenvironment, 2(4): 100187. [42] Negi J G,Tiwari R K,Rao K N N.1996. Clean periodicity in secular variations of dolomite abundance in deep marine sediments. Marine Geology, 133(1): 113-121. [43] Nobes D C,Nobes D C,Bloomer S F,Mienert J,Westall F,Ciesielski P F,Kristoffersen Y,Clement B M,Blangy J,Bourrouilh R,Crux J A,Fenner J M,Froelich P N,Hailwood E A,Hodell D A,Katz M E,Ling H Y,Mueller D W,Mwenifumbo C J,Nocchi M,Warnke D A.1991. Milankovitch cycles and nonlinear response in the Quaternary record in the Atlantic sector of the southern oceans. Proceedings of the Ocean Drilling Program. Scientific Results, 114: 551-576. [44] Peckmann J,Goedert J L.2005. Geobiology of ancient and modern methane-seeps. Palaeogeography,Palaeoclimatology,Palaeoecology, 227(1): 1-5. [45] Petrash D A,Bialik O M,Bontognali T R R,Vasconcelos C,Roberts J A,McKenzie J A,Konhauser K O.2017. Microbially catalyzed dolomite formation: From near-surface to burial. Earth-Science Reviews, 171: 558-582. [46] Raymo M E,Nisancioglu K.2003. The 41 kyr world Milankovitch's other unsolved mystery. Paleoceanography, 18(1): 1011. [47] Rial J A,Pielke R A,Beniston M,Claussen M,Canadell J,Cox P,Held H,de Noblet-Ducoudré N,Prinn R,Reynolds J F,Salas J D.2004. Nonlinearities,feedbacks and critical thresholds within the earth's climate system. Climatic Change, 65(1-2): 11-38. [48] Rivers J M,Yousif R,Kaczmarek S E,Al-Shaikh I.2021. Cenozoic coastal carbonate deposits of Qatar: evidence for dolomite preservation bias in highly-arid systems. Sedimentology, 68(2): 771-787. [49] Shalev N,Bontognali T R R,Wheat C G,Vance D.2019. New isotope constraints on the Mg oceanic budget point to cryptic modern dolomite formation. Nature Communications, 10(1): 5646. [50] Shi J Y,Jin Z J,Liu Q Y,Zhang R,Huang Z K.2019. Cyclostratigraphy and astronomical tuning of the middle Eocene terrestrial successions in the Bohai Bay Basin,Eastern China. Global and Planetary Change, 174: 115-126. [51] Sibley D F.1991. Secular changes in the amount and texture of dolomite. Geology, 19: 151-154. [52] Song H J,Wignall P B,Tong J N,Bond D P G,Song H Y,Lai X L,Zhang K X,Wang H M,Chen Y L.2012. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian-Triassic transition and the link with end-Permian extinction and recovery. Earth and Planetary Science Letters, 353-354: 12-21. [53] Song H Y,Tong J N,Algeo T J,Song H J,Qiu H O,Zhu Y Y,Tian L,Bates S,Lyons T W,Luo G M,Kump L R.2014. Early Triassic seawater sulfate drawdown. Geochimica et Cosmochimica Acta, 128: 95-113. [54] Stockhecke M,Sturm M,Brunner I,Schmincke H U,Sumita M,Kipfer R,Cukur D,Kwiecien O,Anselmetti F S,Ariztegui D.2014. Sedimentary evolution and environmental history of Lake Van(Turkey)over the past 600 000 years. Sedimentology, 61(6): 1830-1861. [55] Sun S Q.1994. A reappraisal of dolomite abundance and occurrence in the Phanerozoic. Journal of Sedimentary Research,64: 396-404. [56] Sun Y D,Joachimski M M,Wignall P B,Yan C B,Chen Y L,Jiang H S,Wang L N,Lai X L.2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338: 366-370. [57] Tomonaga Y,Brennwald M S,Livingstone D M,Kwiecien O,Randlett M È,Stockhecke M,Unwin K,Anselmetti F S,Beer J,Haug G H,Schubert C J,Sturm M,Kipfer R.2017. Porewater salinity reveals past lake-level changes in Lake Van,the earth's largest soda lake. Scientific Reports, 7(1): 313. [58] Vasconcelos C,McKenzie J A,Bernasconi S,Grujic D,Tiens A J.1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377(6546): 220-222. [59] Wang M,Chen Y,Bain W M,Song G Q,Liu K Y,Zhou Z Z,Steele-MacInnis M.2020. Direct evidence for fluid overpressure during hydrocarbon generation and expulsion from organic-rich shales. Geology, 48(4): 374-378. [60] Wang P X.2021. Low-latitude forcing: A new insight into paleo-climate changes. The Innovation, 2(3): 100145. [61] Wang S,Wang G W,Huang L L,Song L T,Zhang Y L,Li D,Huang Y Y.2021. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag,China. Marine and Petroleum Geology, 133: 105299. [62] Warren J.2000. Dolomite: occurrence,evolution and economically important associations. Earth-Science Reviews, 52(1): 1-81. [63] Wei W,Algeo T J,Lu Y B,Lu Y C,Liu H M,Zhang S P,Peng L,Zhang J Y,Chen L.2018. Identifying marine incursions into the Paleogene Bohai Bay Basin lake system in northeastern China. International Journal of Coal Geology, 200: 1-17. [64] Yang Y Q,Qiu L W,Gregg J,Shi Z,Yu K H.2016. Formation of fine crystalline dolomites in lacustrine carbonates of the Eocene Sikou Depression,Bohai Bay Basin,East China. Petroleum Science, 13(4): 642-656. [65] Zhao K,Du X B,Lu Y C,Xiong S P,Wang Y.2019. Are light-dark coupled laminae in lacustrine shale seasonally controlled?A case study using astronomical tuning from 42.2 to 45.4 Ma in the Dongying Depression,Bohai Bay Basin,eastern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 528: 35-49.