Abstract In the southern margin of the Ordos Basin,no cyclostratigraphic analysis has yet been conducted on the Paleozoic Ordovician to identify astronomical orbital cycle signals. This analysis is crucial for establishing a high-precision geological timescale and reasonably dividing third-order sequences,which is of significant importance for oil and gas exploration in the area. Combining cyclostratigraphic theory and signal decomposition techniques,a cyclostratigraphic analysis of the Paleozoic Ordovician in the Well XT1 was performed. The results indicate that there are differences in sedimentation rates among different strata. The sedimentation rate during the Yeli and Liangjiashan stages in Well XT1 area ranges from 4.2 to 5.6 cm/ka,while the Majiagou stage varies between 2.2 and 5.5 cm/ka. The sedimentation rate during the Pingliang and Beiguoshan stages increases,ranging from 4.3 to 9.3 cm/ka. Significant Milankovitch cycle signals are present in the Ordovician of Well XT1,recording eccentricity and obliquity astronomical orbital periods. A 405 ka eccentricity cycle was used to establish an age model for astronomical tuning,creating a fluctuating astronomical timescale for the Ordovician in Well XT1,with the sedimentation period for the Yeli to Liangjiashan Formations at approximately 3.25 Ma,and for the Majiagou to Beiguoshan Formations at around 27.4 Ma. Using wavelet transformation,the frequency of the Ordovician third-order sequences was primarily distributed around 0.011 cycles/m,allowing the division of the Ordovician in Well XT1 into approximately 13 third-order sequences. This study provides a new quantitative method and scientific basis for the division of Ordovician sequences and the study of astronomical cycles,contributing to a refined understanding of sedimentary processes and the accuracy of timescales.
Fund:Liaoning Provincial Natural Science Foundation(No.2024-BS-338)and the Key Science and Technology Project of PetroChina Liaohe Oilfield Company(No.2023KJXM-11)
About author: About the author LI Yang,born in 1988,received his Ph.D. from Southwest Petroleum University in 2022. His research focuses on sedimentary reservoirs and data mining. E-mail: 7891235@qq.com.
Cite this article:
LI Yang. Extraction of astronomical cycle signals and identification of third-order sequences in the Ordovician of Well XT1, southern margin of Ordos Basin[J]. JOPC, 2025, 27(1): 209-224.
LI Yang. Extraction of astronomical cycle signals and identification of third-order sequences in the Ordovician of Well XT1, southern margin of Ordos Basin[J]. JOPC, 2025, 27(1): 209-224.
[1] 陈留勤. 2008. 从准层序到米级旋回: 层序地层学与旋回地层学相互交融的纽带. 地层学杂志,32(4): 447-454. [Chen L Q.2008. From parasequences to meter-scale cycles: the connection between sequence stratigraphy and cyclostratigraphy. Journal of Stratigraphy,32(4): 447-454] [2] 杜金虎,李相博,包洪平,徐旺林,王雅婷,黄军平,王宏波,完颜容,王菁. 2019. 鄂尔多斯盆地中新元古界—下古生界天然气成藏地质条件及勘探新领域. 石油勘探与开发,46(5): 820-835. [Du J H,Li X B,Bao H P,Xu W L,Wang Y T,Huang J P,Wang H B,Wan Y R,Wang J.2019. Geological conditions of natural gas accumulation and new exploration areas in the Mesoproterozoic to Lower Paleozoic of Ordos Basin,NW China. Petroleum Exploration and Development,46(5): 820-835] [3] 付金华,郭彦如,赵振宇,张月巧. 2020. 鄂尔多斯盆地奥陶纪层序岩相古地理. 北京: 石油工业出版社. [Fu J H,Guo Y R,Zhao Z Y,Zhang Y Q. 2020. Ordovician Sequence Lithofacies Paleogeography of the Ordos Basin. Beijing: Petroleum Industry Press] [4] 郭彦如,赵振宇,付金华,徐旺林,史晓颖,孙六一,高建荣,张延玲,张月巧,刘俊榜,刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报,33(S2): 95-109. [Guo Y R,Zhao Z Y,Fu J H,Xu W L,Shi X Y,Sun L Y,Gao J R,Zhang Y L,Zhang Y Q,Liu J B,Liu H.2012. Sequence lithofacies paleogeography of the Ordovician in Ordos Basin,China. Acta Petrolei Sinica,33(S2): 95-109] [5] 李文厚,张倩,李克永,陈强,郭艳琴,马瑶,冯娟萍,张道锋. 2021. 鄂尔多斯盆地及周缘地区晚古生代沉积演化. 古地理学报,23(1): 39-52. [Li W H,Zhang Q,Li K Y,Chen Q,Guo Y Q,Ma Y,Feng J P,Zhang D F.2021. Sedimentary evolution of the Late Paleozoic in Ordos Basin and its adjacent areas. Journal of Palaeogeography(Chinese Edition),23(1): 39-52] [6] 刘冬洋. 2021. 华南中三叠统旋回地层学研究. 中国地质大学(武汉)博士学位论文. [Liu D Y.2021. Cyclostratigraphic study of the Middle Triassic Series in South China. Doctoral dissertation of China University of Geosciences(WuHan)] [7] 刘天娇,张妍煜,赵迪斐. 2022. 四川盆地焦石坝地区五峰组龙马溪组页岩层序地层划分及含气性预测: 以JY2井为例. 非常规油气,9(2): 34-41. [Liu T J,Zhang Y Y,Zhao D F.2022. Sequence stratigraphic division and gas bearing prediction of the Wufeng-Longmaxi Formation shale strata in the Jiaoshiba area,Sichuan Basin: taking Well JY-2 as an example. Unconventional Oil & Gas,9(2): 34-41] [8] 梅冥相. 2015. 从沉积层序到海平面变化层序: 层序地层学一个重要的新进展. 地层学杂志,39(1): 58-73. [Mei M X.2015. From parasequences to meter-scale cycles: the connection between sequence stratigraphy and cyclostratigraphy. Journal of Stratigraphy,39(1): 58-73] [9] 孟卫工,李晓光,吴炳伟,宫振超,董德胜,刘媛媛,咸秀明. 2021. 鄂尔多斯盆地宁古3井太原组含铝岩系天然气成藏特征及地质意义. 中国石油勘探,26(3): 79-87. [Meng W G,Li X G,Wu B W,Gong Z C,Dong D S,Liu Y Y,Xian X M.2021. Research on gas accumulation characteristics of aluminiferous rock series of Taiyuan Formation in Well Ninggu 3 and its geological significance,Ordos Basin. China Petroleum Exploration,26(3): 79-87] [10] 孟祥化,葛铭. 2002. 中朝板块旋回层序、事件和形成演化的探索. 地学前缘,9(3): 125-140. [Meng X H,Ge M.2002. Research on cyclic sequence events and formational evolution of the Sino-Korea Plate. Earth Science Frontiers,9(3): 125-140] [11] 任传真. 2020. 华南宜昌地区中—晚奥陶世地层旋回地层学研究. 中国地质大学(北京)硕士学位论文. [Ren C Z.2020. Cyclostratigraphy study of the Middle-Late Ordovician in Yichang,South China. Masteral dissertation of China University of Geosciences(Beijing)] [12] 师平平. 2022. 鄂尔多斯地块南缘奥陶纪前陆盆地结构与演化. 浙江大学硕士学位论文. [Shi P P.2022. Structure and evolution of Ordovician foreland basin on the southern margin of Ordos block. Masteral dissertation of Zhejiang University] [13] 师平平,肖安成,付金华,吴磊,周义军,王依平,覃素华,张万福. 2021. 鄂尔多斯地块南缘奥陶纪前陆盆地的沉积大地构造格架与演化. 岩石学报,37(8): 2531-2546. [Shi P P,Xiao A C,Fu J H,Wu L,Zhou Y J,Wang Y P,Qin S H,Zhang W F.2021. The sedimentary and tectonic framework of the Ordovician foreland basin in the southern margin of the Ordos Block and its evolution. Acta Petrologica Sinica,37(8): 2531-2546] [14] 石巨业,金之钧,刘全有,黄振凯,张瑞. 2019. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分. 石油与天然气地质,40(6): 1205-1214. [Shi J Y,Jin Z J,Liu Q Y,Huang Z K,Zhang R.2019. Quantitative classification of high-frequency sequences in fine-grained lacustrine sedimentary rocks based on Milankovitch theory. Oil & Gas Geology,40(6): 1205-1214] [15] 史晓颖. 1996.35 Ma地质历史上一个重要的自然周期. 地球科学,31(3): 3-10. [Shi X Y.1996.35 Ma: an important natural periodicity in geological history: concept and causes of natural crisis. Earth Science,31(3): 3-10] [16] 田军,吴怀春,黄春菊,李明松,马超,汪品先. 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学,47(10): 3543-3568. [Tian J,Wu H C,Huang C J,Li M S,Ma C,Wang P X.2022. Revisiting the Milankovitch Theory from the perspective of the 405 ka long eccentricity cycle. Earth Science,47(10): 3543-3568] [17] 王浩. 2020. 小波变换在测井曲线地层划分对比中的应用. 中国石油大学(北京)硕士学位论文. [Wang H.2020. Application of wavelet transform in the stratigraphic division and correlation of well logs. Masteral dissertation of China University of petroleum(Beijing)] [18] 王龙,梅朝佳,李屹尧,赵静. 2018. 鄂尔多斯盆地奥陶系马家沟组层序地层特征及控藏作用. 东北石油大学学报,42(3): 26-36. [Wang L,Mei C J,Li Y Y,Zhao J.2018. Sequence stratigraphic features and their control over hydrocarbon accumulation of the Ordovician Majiaogou Formation in the Ordos Basin. Journal of Northeast Petroleum University,42(3): 26-36] [19] 王翔,冯永超. 2024. 鄂尔多斯盆地南缘华北探区页岩油储层岩石力学特性实验研究. 非常规油气,11(1): 110-118. [Wang X,Feng Y C.2024. Study on rock mechanical properties of shale oil reservoir in North China exploration,southern Ordos Basin. Unconventional Oil & Gas,11(1): 110-118] [20] 王香增,曹红霞,曹军,高潮. 2022. 鄂尔多斯盆地延安地区下古生界天然气气源分析. 非常规油气,9(6): 9-13. [Wang X Z,Cao H X,Cao J,Gao C.2022. Analysis of natural gas source of Lower Paleozoic in Yan'an Area,Ordos Basin. Unconventional Oil & Gas,9(6): 9-13] [21] 吴怀春,钟阳阳,房强,杨天水,李海燕,张世红. 2017. 古生代旋回地层学与天文地质年代表. 矿物岩石地球化学通报,36(5): 750-770. [Wu H C,Zhong Y Y,Fang Q,Yang T S,Li H Y,Zhang S H.2017. Paleozoic cyclostratigraphy and astronomical time scale. Bulletin of Mineralogy,Petrology and Geochemistry,36(5): 750-770] [22] 许可. 2021. 南襄盆地古近系湖盆旋回地层学研究及其在油气地质上的意义. 中国地质大学(武汉)博士学位论文. [Xu K.2021. Cyclostratigraphy and its implications for petroleum geology in the Paleogene lacustrine strata from the Nanxiang Basin: the case study of Biyang sag. Doctoral dissertation of China University of Geosciences(WuHan)] [23] 闫建平,言语,彭军,李尊芝,耿斌,赖富强. 2017. 天文地层学与旋回地层学的关系、研究进展及其意义. 岩性油气藏,29(1): 147-156. [Yan J P,Yan Y,Peng J,Li Z Z,Geng B,Lai F Q.2017. The research progress,significance and relationship of astrostratigraphy with cyclostratigraphy. Lithologic Reservoirs,29(1): 147-156] [24] 杨华,付金华,陈洪德. 2021. 鄂尔多斯盆地碳酸盐岩沉积地质与油气勘探新领域. 北京: 科学出版社. [Yang H,Fu J H,Chen H D. 2021. New Frontiers in Sedimentary Geology of Carbonates and Oil & Gas Exploration in the Ordos Basin. Beijing: Science Press] [25] 杨伟利,王起琮,刘佳玮,石堃,魏巍. 2017. 鄂尔多斯盆地奥陶系马家沟组标准化层序地层学研究. 西安科技大学学报,37(2): 234-241. [Yang W L,Wang Q C,Liu J W,Shi K,Wei W.2017. Standardization of sequence stratigraphy in Ordovician Majiagou Formation,Ordos Basin. Journal of Xi'an University of Science and Technology,37(2): 234-241] [26] 杨友运,赵永刚,陈朝兵. 2019. 鄂尔多斯盆地南部奥陶系生物礁滩分布与油气地质意义. 北京: 科学出版社. [Yang Y Y,Zhao Y G,Chen Z B. 2019. Distribution of Biostromes in the Ordovician of Southern Ordos Basin and Its Geological Significance for Oil and Gas. Beijing: Science Press] [27] 于春勇. 2019. 鄂尔多斯盆地伊陕斜坡吴起—甘泉奥陶系马家沟组中下组合白云岩成因及其主控因素. 西北大学博士学位论文. [Yu C Y.2019. Genesis and main controlling factors of the middle and lower dolomite of the Majiagou Formation in the Wuqi-Ganquan Ordovician,Yishan Slope,Ordos Basin. Doctoral dissertation of Northwest University] [28] 张家明,刘东悦,张妍煜,刘天娇,汪生秀,焦伟伟,赵迪斐,郭英海. 2023. 深层页岩高分辨率层序地层控制的非均质性特征及其与含气性的关系: 以渝西地区Z203井为例. 非常规油气,10(1): 52-60. [Zhang J M,Liu D Y,Zhang Y Y,Liu T J,Wang S X,Jiao W W,Zhao D F,Guo Y H.2023. Heterogeneity characteristics of high-resolution sequence stratigraphic control in deep shale and its relationship with gas-bearing: a case study of the Well Z203 in western Chongqing Area. Unconventional Oil & Gas,10(1): 52-60] [29] 赵航,罗腾跃,贺沛,孙建峰,李涛. 2024. 鄂尔多斯盆地南部山西组致密储层的分形特征及其影响因素分析. 非常规油气,11(2): 37-45. [Zhao H,Luo T Y,He P,Sun J F,Li T.2024. Fractal characteristics and influencing factors of tight reservoirs in Shanxi Formation in southern Ordos Basin. Unconventional Oil & Gas,11(2): 37-45] [30] 钟阳阳. 2019. 华南晚奥陶世米兰科维奇记录及其对太阳系行为的指示意义. 中国地质大学(北京)博士学位论文. [Zhong Y Y.2019. Late Ordovician Milankovitch records in South China and their implications for Solar System behavior. Doctoral dissertation of China University of Geosciences(Beijing)] [31] 周进高,付金华,于洲,吴东旭,丁振纯,李维岭,唐瑾. 2020. 鄂尔多斯盆地海相碳酸盐岩主要储层类型及其形成机制. 天然气工业,40(11): 20-30. [Zhou J G,Fu J H,Yu Z,Wu D X,Ding Z C,Li W L,Tang J.2020. Main types and formation mechanisms of marine carbonate reservoirs in the Ordos Basin. Natural Gas Industry,40(11): 20-30] [32] Berger A.1988. Milankovitch theory and climate. Reviews of Geophysics,26(4): 624-657. [33] Berger A.2013. Milankovitch and Climate: Understanding the Response to Astronomical Forcing. Springer Science & Business Media. [34] Berger A.2021. Milankovitch,the Father of paleoclimate modeling. Climate of the Past,17(4): 1727-1733. [35] Boulila S,Galbrun B,Miller K G,Pekar S F,Browning J V,Laskar J,Wright J D.2011. On the Origin of Cenozoic and Mesozoic “third-order”eustatic sequences. Earth-Science Reviews,109(3): 94-112. [36] Boulila S,Galbrun B,Huret E,Hinnov L A,Rouget I,Gardin S,Bartolini A.2014. Astronomical Calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the Early Toarcian Oae. Earth and Planetary Science Letters,386: 98-111. [37] Boulila S,Laskar J,Haq B U,Galbrun B,Hara N.2018. Long-term cyclicities in phanerozoic sea-level sedimentary record and their potential drivers. Global and Planetary Change,165: 128-136. [38] Boulila S,Brange C,Cruz A M,Laskar J,Gorini C,Dos Reis T,Silva C G.2020. Astronomical pacing of Late Cretaceous third-and second-order sea-level sequences in the Foz Do Amazonas Basin. Marine and Petroleum Geology,117: 104382. [39] Cong F,Zhu F,Cai Z,Chen H,Li J,Wang Y,Wang L.2019. Orbitally forced glacio-eustatic origin of third-order sequences and parasequences in the Middle Permian Maokou Formation,South China. Marine and Petroleum Geology,99: 237-251. [40] Fang Q,Wu H,Hinnov L A,Jing X,Wang X,Jiang Q.2015. Geologic evidence for chaotic behavior of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age. Palaeogeography,Palaeoclimatology,Palaeoecology,440: 848-859. [41] Fang Q,Wu H,Hinnov L A,Jing X,Wang X,Yang T,Li H,Zhang S.2017. Astronomical cycles of Middle Permian Maokou Formation in South China and their implications for sequence stratigraphy and paleoclimate. Palaeogeography,Palaeoclimatology,Palaeoecology,474: 130-139. [42] Fang Q,Wu H,Hinnov L A,Tian W,Wang X,Yang T,Li H,Zhang S.2018. Abiotic and biotic responses to milankovitch-forced megamonsoon and glacial cycles recorded in South China at the end of the Late Paleozoic Ice Age. Global and Planetary Change,163: 97-108. [43] Fang Q,Wu H,Hinnov L A,Wang X,Yang T,Li H,Zhang S.2016. A record of astronomically forced climate change in a Late Ordovician(Sandbian)deep marine sequence,Ordos Basin,North China. Sedimentary Geology,341: 163-174. [44] Fischer A G. 1988. Cyclostratigraphy. In: Global Sedimentary Geology Program-Cretaceous Resources. Events,Rhythms, Beaudoin B, Ginsburg R(eds). Nato International Exchange Program,Digne,France. [45] Gibbs M T,Bice K L,Barron E J,Kump L R. 1999. Glaciation in the Early Paleozoic‘Greenhouse’: The Roles of Paleogeography and Atmospheric CO2. In: Huber B T,Macleod K G,Wing S L(eds). Cambridge: Cambridge University Press,386-422. [46] Hays J D,Imbrie J,Shackleton N J.1976. Variations in the Earth's Orbit: pacemaker of the Ice Ages: for 500,000 years,major climatic changes have followed variations in obliquity and precession. Science,194(4270): 1121-1132. [47] Hilgen F,Schwarzacher W,Strasser A.2004. Concept and Definitions in Cyclostratigraphy(Second Report of the Cyclostratigraphy Working Group): International Subcommission on Stratigraphic Nomenclature of the Iugs Commission on Stratigraphy. [48] Kodama K P,Hinnov L A.2014. Rock Magnetic Cyclostratigraphy. John Wiley & Sons. [49] Laskar J,Robutel P,Joutel F,Gastineau M,Correia A,Levrard B.2004. A long-term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics,428(1): 261-285. [50] Li M,Kump L R,Hinnov L A,Mann M E.2018a. Tracking variable sedimentation rates and astronomical forcing in phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters,501: 165-179. [51] Li M,Hinnov L A,Huang C,Ogg J G.2018b. Sedimentary noise and sea levels linked to land-ocean water exchange and obliquity forcing. Nature Communications,9(1): 1004. [52] Li M,Hinnov L,Kump L.2019. Acycle: time-series analysis software for paleoclimate research and education. Computers & Geosciences,127: 12-22. [53] Liu D,Huang C,Kemp D B,Li M,Ogg J G,Yu M,Foster W J.2021. Paleoclimate and sea level response to orbital forcing in the Middle Triassic of the Eastern Tethys. Global and Planetary Change,199: 103454. [54] Longman J,Mills B J W,Manners H R,Gernon T M,Palmer M R.2021. Late Ordovician climate change and extinctions driven by elevated volcanic nutrient supply. Nature Geoscience,14(12): 924-929. [55] Mann M E,Lees J M.1996. Robust estimation of background noise and signal detection in climatic time series. Climatic Change,33(3): 409-445. [56] Meyers S R.2015. The evaluation of eccentricity-related amplitude modulation and bundling in paleoclimate data: an inverse approach for astrochronologic testing and time scale optimization. Paleoceanography,30(12): 1625-1640. [57] Meyers S R,Sageman B B.2007. Quantification of deep-time orbital forcing by average spectral misfit. American Journal of Science,307(5): 773-792. [58] Villas E,Vennin E,Álvaro J J,Hammann W,Herrera Z A,Piovano E L.2002. The Late Ordovician carbonate sedimentation as a major triggering factor of the hirnantian glaciation. Bulletin De La Société Géologique De France,173(6): 569-578. [59] Waltham D.2015. Milankovitch period uncertainties and their impact on cyclostratigraphy. Journal of Sedimentary Research,85(8): 990-998. [60] Weedon G P. 2003. Time-Series Analysis and Cyclostratigraphy: Examining Stratigraphic Records of Environmental Cycles. Cambridge University Press. [61] Wu H,Fang Q,Hinnov L A,Zhang S,Yang T,Shi M,Li H.2023. Astronomical time scale for the Paleozoic Era. Earth-Science Reviews,244: 104510. [62] Zhang T,Li Y,Fan T,Da Silva A,Shi J,Gao Q,Kuang M,Liu W,Gao Z,Li M.2022. Orbitally-paced climate change in the Early Cambrian and its implications for the history of the Solar System. Earth and Planetary Science Letters,583: 117420. [63] Zhong Y,Wu H,Zhang Y,Zhang S,Yang T,Li H,Cao L.2018. Astronomical calibration of the Middle Ordovician of the Yangtze Block,South China. Palaeogeography,Palaeoclimatology,Palaeoecology,505: 86-99.