Well logging evaluation and characterization of geological information for deep and ultra-deep drilling wells
SU Yang1,2, LAI Jin1,2, BIE Kang3, LI Dong2, ZHAO Fei2, CHEN Kangjun4, LI Hongbin2, WANG Guiwen1,2
1 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 Research Institute of Petroleum Exploration and Development,Tarim Oilfield Company,CNPC,Xinjiang Korla 841000,China; 4 Development Division of Southwest Oil and Gas Field Company,PetroChina, Chengdu 610017,China
Abstract In accordance with the strategic deployment of deep-sea,deep-earth,deep-space and deep-blue initiatives,land drilling is continuously entering towards deep and ultra-deep reservoirs. However, the collection of advanced well log series are limited for the deep and ultra-deep strata, and will result in interpretation ambiguity of well log data. Therefore,it is urgent to use the limited geophysical logging information to fully interpret on the geological information contained in deep and ultra-deep drilling. This paper firstly discusses the focus of logging evaluation in deep and ultra-deep reservoirs based on extensive literature retrieval. Through the analysis of typical research cases,it systematically reviews the application of logging geology in deep and ultra-deep fields,including using logging data to interpret structural geological phenomena,pick up sedimentary information,evaluate and predict reservoir characteristics,and evaluate in-situ stress using logging data. Finally,the development trend of deep and ultra-deep fields is discussed: paying attention to the integration of multi-data source(such as core,experimental data,and seismic data),and developing advanced rock physical models that adapt to the environmental factors of deep and ultra-deep environments based on their differences. At the same time,in the context of the development of big data and artificial intelligence,the advantages of new technology logging are utilized to promote breakthroughs in the field of logging geology in deep and ultra-deep fields,thus breaking through technical bottlenecks.
Fund:National Natural Science Foundation of China(No.42002133),Science Foundation of China University of Petroleum,Beijing(No.2462023QNXZ010)and the strategic cooperation agreement between PetroChina and China University of Petroleum(Beijing)(ZLZX2020-01)
Corresponding Authors:
LAI Jin,born in 1988,Ph.D.,is an associate professor and doctoral supervisor. He is mainly engaged in sedimentology,reservoir geology and well logging geology. E-mail: laijin@cup.edu.cn.
About author: SU Yang,born in 2002,is a doctoral candidate of China University of Petroleum(Beijing). She is mainly engaged in sedimentology,reservoir geology and well logging geology. E-mail: suyangcupb@163.com.
Cite this article:
SU Yang,LAI Jin,BIE Kang et al. Well logging evaluation and characterization of geological information for deep and ultra-deep drilling wells[J]. JOPC, 2025, 27(1): 225-239.
SU Yang,LAI Jin,BIE Kang et al. Well logging evaluation and characterization of geological information for deep and ultra-deep drilling wells[J]. JOPC, 2025, 27(1): 225-239.
[1] 付建伟,李洪楠,孙中春,王贵文,罗兴平. 2015. 玛北地区砂砾岩储层地应力方向测井识别及主控因素. 石油与天然气地质, 36(4): 605-611. [Fu J W,Li H N,Sun Z C,Wang G W,Luo X P.2015. Logging identification and controlling factors of present stress orientations of the coarse-grained clastic reservoirs in Mabei region,Juggar Basin. Oil & Gas Geology,36(4): 605-611] [2] 甘泉,章成广,朱雷,杨淑雯. 2017. 油基泥浆下超声成像测井仪裂缝识别效果分析. 能源与环保, 39(4): 57-63. [Gan Q,Zhang C G,Zhu L,Yang S W.2017. Analysis on effects of fracture identification based on ultrasonic imaging logging in oil-based mud. Energy and Environment, 39(4): 57-63] [3] 高建申,宋阳,刘彦萍,朱凯然,刘昕. 2020. 低电阻率地层基于凹陷电极对的油基泥浆电成像测井四参数计算方法. 石油学报, 41(8): 960-968. [Gao J S,Song Y,Liu Y P,Zhu K R,Liu X.2020. A four-parameter calculation method of oil-based mud electric imaging logging based on concave electrode pairs in low-resistivity formation. Acta Petrolei Sinica, 41(8): 960-968] [4] 郭旭升. 2022. 以关键核心技术突破带动我国深层、超深层油气勘探开发突破. 能源, 164(9): 46-50. [Guo X S.2022. Breakthroughs in deep and ultra-deep oil and gas exploration and development in China driven by key core technology breakthroughs. Energy, 164(9): 46-50] [5] 何登发,马永生,刘波,蔡勋育,张义杰,张健. 2019. 中国含油气盆地深层勘探的主要进展与科学问题. 地学前缘, 26(1): 1-12. [He D F,Ma Y S,Liu B,Cai X Y,Zhang Y J,Zhang J.2019. Main advances and key issues for deep-seated exploration in petroliferous basins in China. Earth Science Frontiers, 26(1): 1-12] [6] 何治亮,马永生,朱东亚,段太忠,耿建华,张军涛,丁茜,钱一雄,沃玉进,高志前. 2021. 深层—超深层碳酸盐岩储层理论技术进展与攻关方向. 石油与天然气地质, 42(3): 533-546. [He Z L,Ma Y S,Zhu D Y,Duan T Z,Geng J H,Zhang J T,Ding Q,Qian Y X,Wo Y J,Gao Z Q.2021. Theoretical and technological progress and research direction of deep and ultra-deep carbonate reservoirs. Oil & Gas Geology, 42(3): 533-546] [7] 黄继新,彭仕宓,王小军,肖昆. 2006. 成像测井资料在裂缝和地应力研究中的应用. 石油学报, 27(6): 65-69. [Huang J S,Peng S M,Wang X J,Xiao K.2006. Applications of imaging logging data in the research of fracture and ground stress. Acta Petrolei Sinica, 27(6): 65-69] [8] 季宗镇,戴俊生,汪必峰. 2010. 地应力与构造裂缝参数间的定量关系. 石油学报, 31(1): 68-72. [Ji Z Z,Dai J S,Wang B F.2010. Quantitative relationship between crustal stress and parameters of tectonic fracture. Acta Petrolei Sinica, 31(1): 68-72] [9] 贾承造. 2023. 含油气盆地深层—超深层油气勘探开发的科学技术问题. 中国石油大学学报(自然科学版), 47(5): 1-12. [Jia C Z.2023. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation. Journal of China University of Petroleum(Edition of Natural Science), 47(5): 1-12] [10] 赖锦,王贵文,王书南,郑懿琼,吴恒,张永辰. 2013. 碎屑岩储层成岩相研究现状及进展. 地球科学进展, 28(1): 39-50. [Lai J,Wang G W,Wang S N,Zheng Y Q,Wu H,Zhang Y C.2013. Research status and advances in the diagenetic facies of clastic reservoirs. Advance in Earth Science, 28(1): 39-50] [11] 赖锦,王贵文,孙思勉,蒋晨,周磊,郑新华,吴庆宽,韩闯. 2015. 致密砂岩储层裂缝测井识别评价方法研究进展. 地球物理学进展, 30(4): 1712-1724. [Lai J,Wang G W,Sun S M,Jiang C,Zhou L,Zheng X H,Wu Q K,Han C.2015. Research advances in logging recognition and evaluation method of fractures in tight sandstone reservoirs. Progress in Geophysics, 30(4): 1712-1724] [12] 赖锦,韩能润,贾云武,季玉山,王贵文,庞小娇,贺智博,王松. 2018. 基于测井资料的辫状河三角洲沉积储层精细描述. 中国地质, 45(2): 304-318. [Lai J,Han N R,Jia Y W,Ji Y S,Wang G W,Pang X J,He Z B,Wang S.2018. Detailed description of the sedimentary reservoir of a braided delta based on well logs. Geology in China, 45(2): 304-318] [13] 赖锦,王贵文,庞小娇,韩宗晏,李栋,赵仪迪,王松,江程舟,李红斌,黎雨航. 2021a. 测井地质学前世、今生与未来: 写在《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804-1828. [Lai J,Wang G W,Pang X J,Han Z Y,Li D,Zhao Y D,Wang S,Jiang C Z,Li H B,Li Y H. 2021a. The past,present and future of well logging geology: to celebrate the publication of the second edition of “Well Logging Geology”. Geological Review, 67(6): 1804-1828] [14] 赖锦,包萌,刘士琛,李栋,王松,杨科夫,陈旭,王贵文,丁修建. 2021b. 塔里木盆地深层、超深层白云岩优质储集层测井预测. 古地理学报, 23(6): 1225-1242. [Lai J,Bao M,Liu S C,Li D,Wang S,Yang K F,Chen X,Wang G W,Ding X J.2021b. Prediction of high quality deep and ultra-deep dolostones reservoirs in Tarim Basin by well logs. Journal of Palaeogeography(Chinese Edition), 23(6): 1225-1242] [15] 赖锦,庞小娇,赵鑫,赵仪迪,王贵文,黄玉越,李红斌,黎雨航. 2022. 测井地质学研究典型误区与科学思维. 天然气工业, 42(7): 31-44. [Lai J,Pang X J,Zhao X,Zhao Y D,Wang G W,Huang Y Y,Li H B,Li Y H.2022. Typical misunderstandings and scientific ideas in well logging geology research. Natural Gas Industry, 42(7): 31-44] [16] 赖锦,肖露,赵鑫,赵飞,黎雨航,朱世发,王贵文,刘宏坤. 2023a. 深层—超深层优质碎屑岩储层成因与测井评价方法: 以库车坳陷白垩系巴什基奇克组为例. 石油学报, 44(4): 612-625. [Lai J,Xiao L,Zhao X,Zhao F,Li Y H,Zhu S F,Wang G W,Liu H K.2023a. Genesis and logging evaluation of deep to ultra-deep high-quality clastic reservoirs: a case study of the Cretaceous Bashijiqike Formation in Kuqa depression. Acta Petrolei Sinica, 44(4): 612-625] [17] 赖锦,白天宇,肖露,赵飞,李栋,李红斌,王贵文,张荣虎. 2023b. 地应力测井评价方法及其地质与工程意义. 石油与天然气地质, 44(4): 1033-1043. [Lai J,Bai T Y,Xiao L,Zhao F,Li D,Li H B,Wang G W,Zhang R H.2023b. Well-logging evaluation of in-situ stress fields and its geological and engineering significances. Oil & Gas Geology, 44(4): 1033-1043] [18] 赖锦,肖露,白天宇,范旗轩,黄玉越,李红斌,赵飞,王贵文. 2024. 成像测井解释评价方法及其地质应用. 地质科技通报,43(3): 323-340. [Lai J,Xiao L,Bai T Y,Fan Q X,Huang Y Y,Li H B,Zhao F,Wang G W.2024. Interpretation and evaluation methods of image logs and their geological applications. Bulletin of Geological Science and Technology,43(3): 323-340] [19] 李军,王贵文,欧阳健. 2001. 利用测井信息定量研究库车坳陷山前地区地应力. 石油勘探与开发, 28(5): 93-95. [Li J,Wang G W,Ouyang J.2001. Using logging data to quantitatively study terrestrial-stress of Kuqa field. Petroleum Exploration and Development, 28(5): 93-95] [20] 李浩,刘双莲,魏修平,谭承军. 2015. 隐性测井地质信息的识别方法. 地球物理学进展, 30(1): 195-202. [Li H,Liu S L,Wei X P,Tan C J.2015. Method exploration of implicit logging geological information research. Progress in Geophysics, 30(1): 195-202] [21] 李宁,徐彬森,武宏亮,冯周,李雨生,王克文,刘鹏. 2021. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 42(4): 508-522. [Li N,Xu B S,Wu H L,Fen Z,Li Y S,Wang K W,Liu P.2021. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 42(4): 508-522] [22] 李宁,冯周,武宏亮,田瀚,刘鹏,刘英明,刘忠华,王克文,徐彬森. 2023. 中国陆相页岩油测井评价技术方法新进展. 石油学报, 44(1): 28-44. [Li N,Feng Z,Wu H L,Tian H,Liu P,Liu Y M,Liu Z H,Wang K W,Xü B S.2023. New advances in methods and technologies for well logging evaluation of continental shale oil in China. Acta Petrolei Sinica, 44(1): 28-44] [23] 刘宏坤,艾勇,王贵文,陈康军,蔡德洋,曹军涛,解宇强,李栋,赖锦. 2023. 深层、超深层致密砂岩储层成岩相测井定量评价: 以库车坳陷博孜—大北地区为例. 地质科技通报, 42(1): 299-310. [Liu H K,Ai Y,Wang G W,Cheng K J,Cai D Y,Cao J T,Xie Y Q,Li D,Lai J.2023. Quantitative well logging evaluation of diagenetic facies of deep and ultra deep tight sandstone reservoirs: a case study of Bozi-Dabei area in Kuqa Depression. Bulletin of Geological Science and Technology, 42(1): 299-310] [24] 刘志远,李浩,武清钊,南泽宇,苏俊磊,金武军. 2021. 致密砂岩裂缝测井识别特色技术及其应用效果: 以四川盆地川西坳陷新场气田上三叠统须家河组二段为例. 石油与天然气地质, 42(4): 981-991. [Liu Z Y,Li H,Wu Q Z,Nan Z Y,Su J L,Jin W J.2021. Characteristics and application effect of logging-based fracture identification in tight sandstones: a case study of the Upper Triassic Xu 2 Member in western Sichuan Depression,Sichuan Basin. Oil & Gas Geology, 42(4): 981-991] [25] 毛锐,牟立伟,王刚,樊海涛. 2021. 基于核磁共振自由弛豫特征的含油性评价方法: 以玛湖凹陷下乌尔禾组砾岩储层为例. 岩性油气藏, 33(5): 140-147. [Mao R,Mou L W,Wang G,Fan H T.2021. Oil-bearing evaluation method based on NMR free relaxation characteristics: a case study of conglomerate reservoirs of lower Urho Formation in Mahu Sag,Junggar Basin. Lithologic Reservoirs, 33(5): 140-147] [26] 宁从前,周明顺,成捷,苏芮,郝鹏,王敏,潘景丽. 2021. 二维核磁共振测井在砂砾岩储层流体识别中的应用. 岩性油气藏, 33(1): 267-274. [Ning C Q,Zhou M S,Cheng J,Su R,Hao P,Wang M,Pan J L.2021. Application of 2D NMR logging in fluid identification of glutenite reservoir. Lithologic Reservoirs, 33(1): 267-274] [27] 石玉江,刘国强,钟吉彬,王娟,张文静. 2021. 基于大数据的测井智能解释系统开发与应用. 中国石油勘探, 26(2): 113-126. [Shi Y J,Liu G Q,Zhong J B,Wang J,Zhang W J.2021. Development and application of intelligent logging interpretation system based on big data. China Petroleum Exploration, 26(2): 113-126] [28] 唐勇,纪杰,郭文建,陈洪,李彦颖,董方. 2022. 准噶尔盆地阜康凹陷东部中/上二叠统不整合结构特征及控藏作用. 石油地球物理勘探, 57(5): 1138-1147,1005. [Tang Y,Ji J,Guo W J,Chen H,Li Y Y,Dong F.2022. Characteristics and reservoir-control effect of Upper/Middle Permian unconformity structures in the east of Fukang Sag,Junggar Basin. Oil Geophysical Prospecting, 57(5): 1138-1147,1005] [29] 王华,张雨顺. 2021. 测井资料人工智能处理解释的现状及展望. 测井技术, 45(4): 345-356. [Wang H,Zhang Y S.2021. Research status and prospect of artificial intelligence in logging data processing and interpretation. Well Logging Technology, 45(4): 345-356] [30] 王珂,张荣虎,曾庆鲁,王俊鹏,夏九峰,莫涛. 2022. 库车坳陷博孜—大北地区下白垩统深层—超深层储层特征及成因机制. 中国矿业大学学报, 51(2): 311-328. [Wang K,Zhang R H,Zeng Q L,Wang J P,Xia J F,Mo T.2022. Characteristics and formation mechanism of Lower Cretaceous deep and ultra-deep reservoir in Bozi-Dabei area,Kuqa depression. Journal of China University of Mining and Technology, 51(2): 311-328] [31] 王丽忱,甄鉴,邹长春,聂昕. 2014. 成像测井岩心空间归位方法及效果分析. 地质科技情报, 33(4): 207-212. [Wang L C,Zhen J,Zou C C,Nie X.2014. Core spatial restoring with imaging logging data and effect analysis. Geological Science and Technology Information, 33(4): 207-212] [32] 王小敏,樊太亮. 2013. 碳酸盐岩储层渗透率研究现状与前瞻. 地学前缘, 20(5): 166-174. [Wang X M,Fan T L.2013. Progress of research on permeability of carbonate rocks. Earth Science Frontiers, 20(5): 166-174] [33] 魏周拓,范宜仁,陈雪莲. 2012. 横波各向异性在裂缝和应力分析中的应用. 地球物理学进展, 27(1): 217-224. [Wei Z T,Fan Y R,Chen X L.2012. Application of shear wave anisotropy in fractures and in-situ stress analysis. Progress in Geophysics, 27(1): 217-224] [34] 肖承文,杨林,万金彬,韩闯,王谦,夏宏泉,王伟. 2018. 基于地应力的库车前陆盆地储层有效性测井评价. 测井技术, 42(1): 78-84. [Xiao C W,Yang L,Wan J B,Han C,Wang Q,Xia H Q,Wang W.2018. Log evaluation of reservoir validity from formation stress in Kuche Foreland Basin. Well Logging Technology, 42(1): 78-84] [35] 谢然红,肖立志,陆大卫. 2009. 识别储层流体的(T2,T1)二维核磁共振方法. 测井技术, 33(1): 26-31. [Xie R H,Xiao L Z,Lu D W.2009.(T2,T1)Two-dimensional NMR method for fluid typing. Well Logging Technology, 33(1): 26-31] [36] 徐珂,杨海军,张辉,王海应,袁芳,王朝辉,李超. 2021. 克拉苏构造带博孜1气藏现今地应力场和高效开发. 新疆石油地质, 42(6): 726-734. [Xu K,Yang H J,Zhang H,Wang H Y,Yuan F,Wang C H,Li C.2021. Current in-situ stress field and efficient development of Bozi-1 gas reservoir in Kelasu Structural Belt. Xinjiang Petroleum Geology, 42(6): 726-734] [37] 徐珂,田军,杨海军,张辉,鞠玮,刘新宇,王志民,房璐. 2022. 塔里木盆地库车坳陷超深层现今地应力对储层品质的影响及实践应用. 天然气地球科学, 33(1): 13-23. [Xu K,Tian J,Yang H J,Zhang H,Ju W,Liu X Y,Wang Z M,Fang L.2022. Effects and practical applications of present-day in-situ stress on reservoir quality in ultra-deep layers of Kuqa Depression,Tarim Basin. Natural Gas Geoscience, 33(1): 13-23] [38] 曾庆鲁,莫涛,赵继龙,唐永亮,张荣虎,夏九峰,胡春雷,史玲玲. 2020.7000 m以深优质砂岩储层的特征,成因机制及油气勘探意义: 以库车坳陷下白垩统巴什基奇克组为例. 天然气工业, 40(1): 38-47. [Zeng Q L,Mo T,Zhao J L,Tang Y L,Zhang R H,Xia J F,Hu C L,Shi L L.2020. Characteristics,genetic mechanism and oil & gas exploration significance of high-quality sandstone reservoirs deeper than 7000 m: a case study of the Bashijiqike Formation of Lower Cretaceous in the Kuqa Depression. Natural Gas Industry, 40(1): 38-47] [39] 张凯逊,白国平,王权,牛新杰,李秋伟,卢小新. 2016. 致密砂岩储集层成岩相的测井识别与评价: 以冀中坳陷饶阳凹陷古近系沙河街组三段为例. 古地理学报, 18(6): 921-938. [Zhang K X,Bai G P,Wang Q,Niu X J,Li Q W,Lu X X.2016. Wireline log response-based recognition and evaluation of diagenetic facies in tight sandstone reservoirs: a case study of the Member 3 of Paleogene Shahejie Formation in Raoyang sag of Jizhong Depression. Journal of Palaeogeography(Chinese Edition), 18(6): 921-938] [40] 张荣虎,王俊鹏,马玉杰,陈戈,曾庆鲁,周晨光. 2015. 塔里木盆地库车坳陷深层沉积微相古地貌及其对天然气富集的控制. 天然气地球科学, 26(4): 667-678. [Zhang R H,Wang J P,Ma Y J,Chen G,Zeng Q L,Zhou C G.2015. The sedimentary microfacies,palaeo-geomorphology and their controls on gas accumulation of deep-buried cretaceous in Kuqa Depression, Tarim Basin,China. Natural Gas Geoscience, 26(4): 667-678] [41] Ameen M S,MacPherson K,Al-Marhoon M,Rahim Z.2012. Diverse fracture properties and their impact on performance in conventional and tight-gas reservoirs,Saudi Arabia: the Unayzah,South Haradh case study. AAPG Bulletin, 96(3): 459-492. [42] Anovitz L M,Cole D R.2015. Characterization and analysis of porosity and pore structures. Reviews in Mineralogy & Geochemistry, 80(1): 61-164. [43] Coates G R,Xiao L,Prammer M G.1999. NMR Logging Principles and Applications. Halliburton Energy Services Publication,Houston. [44] Daigle H,Johnson A.2016. Combining mercury intrusion and nuclear magnetic resonance measurements using percolation theory. Transport in Porous Media, 111: 669-679. [45] Daigle H,Thomas B,Rowe H,Nieto M.2014. Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough,Integrated Ocean. Drilling Program Expedition 333. Journal of Geophysical Research, 119: 2631-2650. [46] Fan H,Shi J,Fan T l,Gao Z Q,Gu Y,Gao Z,Zhang T H,Li Y,Li B.2021. Sedimentary microfacies analysis of carbonate formation based on FMI and conventional logs: a case study from the Ordovician in the Tahe Oilfield,Tarim Basin,China. Journal of Petroleum Science and Engineering, 203: 108603. [47] Folkestad A,Veselovsky Z,Roberts P.2012. Utilising borehole image logs to interpret delta to estuarine system: a case study of the subsurface Lower Jurassic Cook Formation in the Norwegian northern North Sea. Marine and Petroleum Geology, 29(1): 255-275. [48] Gozalpour F,Danesh A,Todd A C,Tohidi B.2007. Application of tracers in oil-based mud for obtaining high-quality fluid composition in lean gas/condensate reservoirs. SPE Reservoir Evaluation & Engineering, 10(1): 5-11. [49] Guo X,Xu P,Xu M B,Cai J J,Huang T,He M.2020. Formation protection method of oil-based drilling fluid for deep fractured tight gas reservoir. Energy Science & Engineering, 8(10): 3682-3701. [50] Huang Y Y,Wang G W,Zhang Y,Xi J H,Huang L L,Wang S Zhang Y L,Lai J,Jiang C Z.2023. Logging evaluation of pore structure and reservoir quality in shale oil reservoir: the Fengcheng Formation in Mahu sag,Junggar Basin,China. Marine and Petroleum Geology, 156: 106454. [51] Iqbal O,Ahmad M,Abd Kadir A.2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: a case study of the Permian Roseneath and Murteree Shale Gas reservoirs,Cooper Basin,Australia. Journal of Natural Gas Science and Engineering, 58: 34-58. [52] Khoshbakht F,Memarian H,Mohammadnia M.2009. Comparison of Asmari,Pabdeh and Gurpi formation's fractures,derived from image log. Journal of Petroleum Science and Engineering, 67(1-2): 65-74. [53] Keeton G I,Pranter M J,Cole R D,Edmund R.2015. Stratigraphic architecture of fluvial deposits from borehole images,spectral-gamma-ray response,and outcrop analogs,Piceance Basin,Colorado. AAPG Bulletin,99(10): 1929-1956. [54] Kleinberg R L,Kenyon W E,Mitra P P.1994. Mechanism of NMR relaxation of fluids in rock. Journal of Magnetic Resonance,Series A, 108(2): 206-214. [55] Lai J,Wang G W,Fan Z Y,Wang Z Y,Chen J,Zhou Z L,Wang S H,Xiao C W.2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195-214. [56] Lai J,Wang G W,Wang S,Cao J T,Li M,Pang X J,Han C,Fan X Q,Yang L,He Z B,Qin Z Q.2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139-166. [57] Lai J,Li D,Wang G,Cao J T,Li M,Pang X J,Han C,Fan X Q,Yang L,He Z B,Qin Z Q.2019. Earth stress and reservoir quality evaluation in high and steep structure: the Lower Cretaceous in the Kuqa Depression,Tarim Basin,China. Marine and Petroleum Geology, 101: 43-54. [58] Lai J,Chen K,Xin Y,Wu X N,Chen X,Yang K F,Song Q Q,Wang G W,Ding X J.2021. Fracture characterization and detection in the deep Cambrian dolostones in the Tarim Basin,China: insights from borehole image and sonic logs. Journal of Petroleum Science and Engineering, 196: 107659. [59] Lai J,Li D,Ai Y,Liu H K,Cai D Y,Chen K J,Xie Y Q,Wang G W.2022. Structural diagenesis in ultra-deep tight sandstones in the Kuqa Depression,Tarim Basin,China. Solid Earth, 13(6): 975-1002. [60] Lai J,Wang G,Fan Q X,Zhao F,Zhao X,Li Y H,Zhao Y D,Pang X J.2023. Towards the scientific interpretation of geophysical well logs: typical misunderstandings and countermeasures. Surveys in Geophysics, 44: 463-494. [61] Lai J,Su Y,Xiao L,Zhao F,Bai T,Li Y,Li H,Huang Y,Wang G,Qin Z.2024. Application of geophysical well logs in solving geologic issues: past,present and future prospect. Geoscience Frontiers,15: 101779. [62] Laubach S E,Zeng L,Hooker J N,Wang Q,Zhang R,Wang J,Ren B.2023. Deep and ultra-deep basin brittle deformation with focus on China. Journal of Structural Geology, 175: 104938. [63] Li H B,Wang G W,Li Y H,Bai M M,Pang X J,Zhang W F,Zhang X M,Wang Q,Ma X J,Lai J.2023. Fault-karst systems in the deep Ordovician carbonate reservoirs in the Yingshan Formation of Tahe Oilfield Tarim Basin,China. Geoenergy Science and Engineering, 231: 212338. [64] Loucks R G.1999. Paleocave carbonate reservoirs: origins,burial-depth modifications,spatial complexity,and reservoir implications. AAPG Bulletin, 83(11): 1795-1834. [65] Luthi S M,Souhaite P.1990. Fracture apertures from electrical borehole scans. Geophysics, 55(7): 821-833. [66] Massiot C,McNamara D D,Lewis B.2015. Processing and analysis of high temperature geothermal acoustic borehole image logs in the Taupo Volcanic Zone,New Zealand. Geothermics, 53: 190-201. [67] Movahed Z,Junin R,Safarkhanlou Z,Akbar M.2014. Formation evaluation in Dezful embayment of Iran using oil-based-mud imaging techniques. Journal of Petroleum Science and Engineering, 121: 23-37. [68] Wang S,Wang G W,Li D,Wu X N,Chen X,Wang Q Q,Cao J T,Zhang Y L.2022. Comparison between double caliper,imaging logs,and array sonic log for determining the in-situ stress direction: a case study from the ultra-deep fractured tight sandstone reservoirs,the Cretaceous Bashijiqike Formation in Keshen 8 region of Kuqa depression,Tarim Basin,China. Petroleum Science, 19(6): 2601-2617. [69] Wang X,Wang D,Li X,Han C C.2023. Study on pore structure characterization of strong diagenesis sandstones and the logging response characteristics in Tazhong area,Tarim Basin. Journal of Applied Geophysics, 215(8): 105117. [70] Yasin Q,Ding Y,Baklouti S,Boateng C D,Du Q,Golsanami N.2022. An integrated fracture parameter prediction and characterization method in deeply-buried carbonate reservoirs based on deep neural network. Journal of Petroleum Science and Engineering, 208: 109346. [71] Zeng L B,Wang H J,Gong L,Liu B M.2010. Impacts of the tectonic stress field on natural gas migration and accumulation: a case study of the Kuqa Depression in the Tarim Basin,China. Marine and Petroleum Geology, 27(7): 1616-1627. [72] Zhang P,Lu S,Li J,Chen C,Xue H T,Zhang J.2018. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance(NMR). Marine and Petroleum Geology, 89: 775-785. [73] Zoback M D,Barton C A,Brudy M,Castillo D A,Finkbeiner T,Grollimund B R,Moos D B,Peska P,Ward C D,Wiprut D J.2003. Determination of stress orientation and magnitude in deep wells. International Journal of Rock Mechanics and Mining Sciences, 40(7-8): 1049-1076.