Particle size logging inversion method of deep complex clastic rock and its application in fine lithology identification
REN Yufei1,2, YAN Jianping1,2,3, WANG Min4, SONG Dongjiang5, GENG Bin4
1 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China; 2 Natural Gas Geology Key Laboratory of Sichuan Province-Southwest Petroleum University,Chengdu 610500,China; 3 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation-Southwest Petroleum University,Chengdu 610500,China; 4 Institute of Exploration and Development,Shengli Oil Field,SINOPEC,Shandong Dongying 257015,China; 5 Shandong Ruilin Energy Technology Co.,Ltd,Shandong Dongying 257000,China
Abstract The Miocene strata in the L area of the Y Basin in the western part of the South China Sea are characterised by high temperature and ultra-high pressure,which makes drilling difficult and core data rare. In addition, the accuracy of rock chip logging in reflecting lithology is relatively low,making it difficult to meet the requirements of fine identification of lithology. The deep clastic rocks in the second section of Huangliu Formation in the L area of Y basin are used in this study,firstly,using the limited data of core size analysis,rock chip logging and logging,we selected the particle size parameter characterizing lithology: median Md and five logging curves of natural gamma,density,neutron,acoustic time difference and resistivity which are sensitive to changes in the particle size,and constructed the data set of five variables of the median Md and logging,and then we used K-MEANS secondly,using K-MEANS clustering method,the dataset was divided into four classes according to the optimal relationship between “sum of error squares and the number of clusters”(referred to as “granularity classification”),which optimised the correlation between the median Md-granularity and the logging response,and obtained the logging response characteristics of the different classes and the corresponding lithological types. Then,in the actual well data processing process,Fisher's discriminant equation is applied to determine the type of particle size classification to which the unknown depth point belongs,and finally,the intelligent calculation model of median particle size logging based on XGBoost algorithm is established under the particle size classification,and based on the numerical range of median particle size corresponding to different lithologies,it realises the purpose of fine identification of lithology by inverting the median Md curve according to the logging on the wellbore profile. The purpose of fine identification of lithology is achieved by inverting the Md curve on the wellbore profile according to the logging.The results show that the sandstone lithology in the second section of Huangliu Formation in L area is divided into: siltstone,fine sandstone,medium sandstone and coarse sandstone considering the difference of grain size,among which the fine sandstone and medium sandstone are the most dominantly developed lithologies,and the median Md of grain size has the closest relationship with the lithology of different grain sizes,and it is the most reflective of the different grain sizes of lithologies;the intelligent calculation of the median Md of grain size logging model based on XGBoost algorithm is better than that of multiple regression algorithm after the classification of the grain sizes. The prediction effect of the model is better than that of the multiple regression prediction model,and the correlation coefficient between the calculated median particle size and the measured value reaching 0.9397,the average absolute error(MAE) is 0.0195,and the average relative error MRE is 0.1752. The model is an effective method for the fine identification of the lithology of the deep complex clastic rocks,and it also lays a foundation for sedimentary grain sequence analysis and fine interpretation of the reservoir configuration,and the evaluation of the validity on the vertical profile. It also lays the foundation for sedimentary grain sequence analysis,fine interpretation of reservoir configuration and validity evaluation in longitudinal section.
Fund:National Science and Technology Major Project(No. 2017ZX05072-002)and National Natural Science Foundation of China(No.42372177)
Corresponding Authors:
YAN Jianping,born in 1980,Ph.D., is a professor and doctoral supervisor. He is mainly engaged in teaching and research in logging geology and unconventional oil and gas logging evaluation. E-mail: yanjp_tj@163.com.
About author: REN Yufei,born in 2001, is a masteral candidate at Southwest Petroleum University,with research interests in logging geology,rock physics,and digital signal processing and analysis. E-mail: renyufei03@163.com.
Cite this article:
REN Yufei,YAN Jianping,WANG Min et al. Particle size logging inversion method of deep complex clastic rock and its application in fine lithology identification[J]. JOPC, 2025, 27(1): 240-255.
REN Yufei,YAN Jianping,WANG Min et al. Particle size logging inversion method of deep complex clastic rock and its application in fine lithology identification[J]. JOPC, 2025, 27(1): 240-255.
[1] 成卫青,卢艳红. 2015. 一种基于最大最小距离和SSE的自适应聚类算法. 南京邮电大学学报(自然科学版), 35(2): 102-107. [Cheng W Q,Lu Y H.2015. Adaptive clustering algorithm based on maximum and minimum distances,and SSE. Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition), 35(2): 102-107] [2] 段威,罗程飞,刘建章,田金强,吕波,丁亮. 2015. 莺歌海盆地LD区块地层超压对储层成岩作用的影响及其地质意义. 地球科学, 40(9): 1517-1528. [Duan W,Luo C F,Liu J Z,Tian J Q,Lü B, Ding L.2015. Effect of overpressure formation on reservoir diagenesis and its geological significance to LD block of Yinggehai Basin. Earth Science, 40(9): 1517-1528] [3] 范彩伟,刘爱群,吴云鹏,侯静娴. 2022. 莺歌海盆地乐东10区新近系黄流组储层天然气充注与超压演化史. 石油与天然气地质, 43(6): 1370-1381. [Fan C W,Liu A Q,Wu Y P,Hou J X.2022. Gas charging and overpressure evolution history of the Neogene Huangliu Formation reservoir in Ledong 10 area,Yinggehai Basin. Oil & Gas Geology, 43(6): 1370-1381] [4] 黄仁东,韩明,张小军,张海彬,金浩,华正阳. 2011. 基于Fisher判别法岩溶塌陷倾向性等级分类预测. 中国安全科学学报, 21(9): 70-76. [Huang R D,Han M,Zhang X J,Zhang H B,Jing H,Hua Z Y.2011. Classification prediction of karst collapse tendency level based on fisher discriminant analysis method. China Safty Science Journal, 21(9): 70-76] [5] 李超,罗晓容,范彩伟,张立宽,刘爱群,李虎,李俊. 2021. 莺歌海盆地乐东斜坡区乐东A构造储层超压形成机制及其对天然气成藏的启示. 地质科学, 56(4): 1034-1051. [Li C,Luo X R,Fan C W,Zhang L K,Liu A Q,Li H,Li J.2021. Generation mechanism of overpressure and its implication for natural gas accumulation in Miocene reservoir in Ledong A structrure,Ledong slope,Yinggehai Basin. Chinese Journal of Geology(Scientia Geologica Sinica), 56(4): 1034-1051] [6] 李建平,张小庆,李莹. 2022. 基于XGBoost的低渗油田储层粒度预测. 计算机系统应用, 31(2): 241-245. [Li J P,Zhang X Q,Li Y.2022. Prediction of reservoir grain size in low permeability oilfield based on XGBoost. Computer Systems & Applications, 31(2): 241-245] [7] 李伟,刘平,艾能平,邵远,侯静娴. 2020. 莺歌海盆地乐东地区中深层储层发育特征及成因机理. 岩性油气藏, 32(1): 19-26. [Li W,Lu P,Ai N P,Shao Y,Hou J X.2020. Development characteristics and genetic mechanism of med-deep reservoirs in Ledong area,Yinggehai Basin. Lithologic Reservoirs, 32(1): 19-26] [8] 梁则亮,毛晨飞,肖华,陈国军,高衍武,高明,张啸. 2022. 岩石物理相约束下的砂砾岩岩性粒级精细划分: 以准噶尔盆地乌尔禾组为例. 长江大学学报(自然科学版), 19(4): 28-37. [Liang Z L,Mao C F,Xiao H,Chen G J,Gao Y W,Gao M,Zhang X.2022. Fine classification of lithologic grade of sand-conglomerate under the constraint of petrophysical facies: taking the Wuerhe Formation in the Junggar Basin as an example. Journal of Yangtze University(Natural Science Edition), 19(4): 28-37] [9] 刘珊珊,汪志明. 2022. 基于机器学习方法的多采样点储层粒度剖面预测. 石油科学通报, 7(1): 93-105. [Liu S S,Wang Z M.2022. Reservoir grain size profile prediction of multiple sampling points based on a machine learning method. Petroleum Science Bulletin, 7(1): 93-105] [10] 刘为,杨希冰,张秀苹,段亮,邵远,郝德峰. 2019. 莺歌海盆地东部黄流组重力流沉积特征及其控制因素. 岩性油气藏, 31(2): 75-82. [Liu W,Yang X B,Zhang X P,Duan L,Shao Y,Hao D F.2019. Characteristics and controlling factors of gravity flow deposits of Huangliu Formation in eastern Yinggehai Basin. Lithologic Reservoirs, 31(2): 75-82] [11] 刘毅,陆正元,吕晶,谢润成. 2017. 主成分分析法在泥页岩地层岩性识别中的应用. 断块油气田, 24(3): 360-363. [Liu Y,Lu Z Y,Lü J,Xie R C.2017. Application of principal component analysis method in lithology identification for shale formation. Fault-Block Oil & Gas Field, 24(3): 360-363] [12] 罗利,朱心万,常俊,周政英,胡振平. 2007. 苏5、桃7区块不同粒度碎屑岩测井识别方法. 天然气工业, 27(12): 36-38. [Luo L,Zhu X W,Chang J,Zhou Z Y,Hu Z P.2007. Logging recognition methods for clastic rocks with different granularities in blocks SU-5 and TAO-7. Natural Gas Industry, 27(12): 36-38] [13] 罗歆,闫建平,王军,耿斌,王敏,钟广海,张帆,李志鹏,高松洋. 2023. 基于FMI图像深度学习的砂砾岩体沉积微相识别方法: 以东营凹陷北带 Y920区块沙四上亚段为例. 沉积学报, 41(4): 1138-1152. [Luo X,Yan J P,Wang J,Geng B,Wang M,Zhong G H,Zhang F,Li Z P,Gao S Y.2023. A method for identifying sedimentary microfacies in a sandy conglomerate body on deep learning of FMI images: case study of upper submember of the Fourth member,Shahejie Formation in Y920 block,northern zone,Dongying Sag. Acta Sedimentologica Sinica, 41(4): 1138-1152] [14] 马峥,张春雷,高世臣. 2017. 主成分分析与模糊识别在岩性识别中的应用. 岩性油气藏, 29(5): 127-133. [Ma Z,Zhang C L,Gao S C.2017. Lithology identification based on principal component analysis and fuzzy recognition. Lithologic Reservoirs, 29(5): 127-133] [15] 毛倩茹,范彩伟,罗静兰,曹江骏,尤丽,符勇,李珊珊,史肖凡,吴仕玖. 2022. 超压背景下中深层砂岩储集层沉积—成岩演化差异性分析: 以南海莺歌海盆地中新统黄流组为例. 古地理学报, 24(2): 344-360. [Mao Q R,Fan C W,Luo J L,Cao J J,You L,Fu Y,Li S S,Shi X F,Wu S J.2022. Analysis of sedimentary-diagenetic evolution difference on middle-deep buried sandstone reservoirs under overpressure background: a case study of the Miocene Huangliu Formation in Yinggehai Basin,South China Sea. Journal of Palaeogeography(Chinese Edition), 24(2): 344-360] [16] 任建业,雷超. 2011. 莺歌海—琼东南盆地构造—地层格架及南海动力变形分区. 地球物理学报, 54(12): 3303-3314. [Ren J Y,Lei C.2011. Tectonic stratigraphic framework of Yinggehai-Qiongdongnan Basins and its implication for tectonic province division in South China Sea. Chinese Journal of Geophysics,54(12),3303-3314] [17] 孙予舒,黄芸,梁婷,季汉成,向鹏飞,徐新蓉. 2020. 基于XGBoost算法的复杂碳酸盐岩岩性测井识别. 岩性油气藏, 32(4): 98-106. [Sun Y S,Huang Y,Liang T,Ji H C,Xiang P F,Xu X R.2020. Identification of complex carbonate lithology by logging based on XGBoost algorithm. Lithologic Reservoirs, 32(4): 98-106] [18] 谭增驹,郑宏安,张超谟,刘子云. 1995. 利用粒度中值平均粒径研究陆源碎屑岩岩性与结构. 测井技术, 19(2): 130-134. [Tan Z J,Zheng H A,Zhang C M,Liu Z Y.1995. Study of the lithology and texture of terrigenous clastic rock with medium grain size and average grain diameter. Well Logging Technology, 19(2): 130-134] [19] 田艳,孙建孟,王鑫,田国栋. 2010. 利用逐步法和Fisher判别法识别储层岩性. 勘察地球物理进展, 33(2): 126-134. [Tian Y,Sun J M,Wang X,Tian G D.2010. Identifying reservoir lithology by step-by-step method and Fisher discriminant. Petroleum Reservoir Evaluation and Development, 33(2): 126-134] [20] 吴进波,张海荣,陈现. 2022. 核磁测井资料在岩石粒度反演中的应用. 海洋石油, 42(3): 67-73. [Wu J B,Zhang H R,Chen X.2022. The application of NMR logging data in the inversion of rock grain size. Offshore Oil, 42(3): 67-73] [21] 吴仕玫,范彩伟,招湛杰,代龙,邓孝亮,钟佳. 2019. 莺歌海盆地乐东区碳酸盐胶结物成因及地质意义. 地球科学, 44(8): 2686-2694. [Wu S M,Fan C W,Zhao Z J,Dai L,Deng X L,Zhong J.2019. Origin of carbonate cement in reservoirs of Ledong Area,Yinggehai Basin and its geological significance. Earth Science, 44(8): 2686-2694] [22] 谢晓庆,吴伟,程亮,赵莉,隋秀英,刘春雷. 2022. 复杂岩性储层渗透率建模中的应用. 工程地球物理学报, 19(3): 310-315. [Xie X Q,Wu W,Cheng L,Zhao L,Sui X Y,Liu C L.2022. Application of granularity analysis in permeability modeling of complex lithologic reservoir. Chinese Journal of Engineering Geophysics, 19(3): 310-315] [23] 谢玉洪. 2011. 莺歌海高温超压盆地压力预测模式及成藏新认识. 天然气工业, 31(12): 21-25. [Xie Y H.2011. Models of pressure prediction and new understandings of hydrocarbon accumulation in the Yinggehai Basin with high temperature and super-high pressure. Natural Gas Industry, 31(12): 21-25] [24] 闫建平,蔡进功,赵铭海,李尊芝,徐冠华. 2011. 电成像测井在砂砾岩体沉积特征研究中的应用. 石油勘探与开发, 38(4): 444-451. [Yan J P,Cai J G,Zhao M H,Li Z Z,Xu G H.2011. Application of electrical image logging in the study of sedimentary characteristics of sandy conglomerates. Petroleum Exploration and Development, 38(4): 444-451] [25] 杨计海,黄保家,陈殿远. 2018. 莺歌海盆地坳陷斜坡带低孔特低渗气藏形成条件及勘探潜力. 中国海上油气, 30(1): 11-21. [Yang J H,Huang B J,Chen D Y.2018. Accumulation condition and exploration potential of low porosity and ultra-low permeability sandstone gas reservoirs on the depression slope belt of Yinggehai Basin. China Offshore Oil and Gas, 30(1): 11-21] [26] 杨俊闯,赵超. 2019. K-Means聚类算法研究综述. 计算机工程与应用, 55(23): 7-14. [Yang J C,Zhao C.2019. Survey on K-Means clustering algorithm. Computer Engineering and Applications, 55(23): 7-14] [27] 杨楷乐,何胜林,杨朝强,王猛,张瑞雪,任双坡,赵晓博,姚光庆. 2023. 高温—超压—高CO2背景下致密砂岩储层成岩作用特征: 以莺歌海盆地LD10区新近系梅山组—黄流组为例. 岩性油气藏, 35(1): 83-95. [Yang K L,He S L,Yang Z Q,Wang M,Zhang R X,Ren S P,Zhao X B,Yao G Q.2023. Diagenesis characteristics of tight sandstone reservoirs with high temperature,overpressure and high CO2 content: a case study of Neogene Meishan-Huangliu Formation in LD10 area,Yinggehai Basin. Lithologic Reservoirs, 35(1): 83-95] [28] 杨宁,王贵文,赖锦,李鉴伦,苍丹,蒋其君. 2012. 应用伽马测井曲线小波变换计算粒度参数. 现代地质, 26(4): 778-783. [Yang N,Wang G W,Lai J,Li J L,Cang D,Jiang Q J.2012. Application of gamma curves wavelet transform to calculate grain size parameters. Geoscience, 26(4): 778-783] [29] 尤丽,范彩伟,吴仕玫,罗静兰,李才,代龙,李驰. 2021. 莺歌海盆地乐东区储层碳酸盐胶结物成因机理及与流体活动的关系. 地质学报, 95(2): 578-587. [You L,Fan C W,Wu S J,Luo J L,Li C,Dai L,Li C.2021. Genesis of carbonate cement and its relationship with fluid activity in the Ledong area,Yinggehai Basin. Acta Geologica Sinica, 95(2): 578-587] [30] 张强,李家金,王毛毛,唐湘飞. 2022. 基于改进主成分分析法的测井曲线岩性分层技术. 吉林大学学报(地球科学版), 52(4): 1369-1376. [Zhang Q,Li J J,Wang M M,Tang X F.2022. Logging curve rock layering technology based on improved principal component analysis. Journal of Jilin University(Earth Science Edition), 52(4): 1369-1376] [31] 张涛,莫修文. 2007. 基于交会图与模糊聚类算法的复杂岩性识别. 吉林大学学报(地球科学版),37(增刊1): 109-113. [Zhang T,Mo X W.2007. Complex lithologic identification based on cross plot and fuzzy clustering algorithm. Journal of Jilin University(Earth Science Edition),37(Supplement 1): 109-113] [32] 张焱,周永章,朱继田. 2015. 基于主成分的多重分形法在岩性识别中的应用. 中山大学学报(自然科学版), 54(3): 145-157. [Zhang Y,Zhou Y Z,Zhu J T.2015. Multi-fractal method's application based on principal component in lithology recognition. Acta Scientiarum Naturalium Universitatis Sunyatseni, 54(3): 145-157] [33] 赵军,肖承文,王淼,陈伟中. 2013. 测井资料在沉积物粒序反演中的应用. 地球科学, 38(4): 792-796. [Zhao J,Xiao C W,Wang M,Chen W Z.2013. Application of logging data to the sediment size-grading inversion. Earth Science, 38(4): 792-796] [34] 赵军,代新雪,古莉,祁新忠,陈伟中. 2016. 基于粒度控制的复杂储层渗透性建模方法. 吉林大学学报(地球科学版), 46(1): 279-285. [Zhao J,Dai X X,Gu L,Qi X Z,Chen W Z.2016. Method of permeability model establishment based on the complex reservoir controlled by particle-size. Journal of Jilin University(Earth Science Edition), 46(1): 279-285] [35] 赵笑笑,闫建平,王敏,何贤,钟光海,王军,耿斌,胡钦红,李志鹏. 2022. 沾化凹陷沙河街组湖相泥页岩夹层特征及测井识别方法. 岩性油气藏, 34(1): 118-129. [Zhao X X,Yan J P,Wang M,He X,Zhong G H,Wang J,Geng B,Hu Q H,Li Z P.2022. Logging identification method of lacustrine shale interlayers of Shahejie Formation in Zhanhua Sag. Lithologic Reservoirs, 34(1): 118-129] [36] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社. [Zhu X M. 2008. Sedimentary Petrology. Beijing: Petroleum Industry Press] [37] Bloch S,Lander R H,Bonnell L.2002. Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability. AAPG Bulletin, 86(2): 301-328. [38] Chen T Q,Guestrin C.2016. XGBoost: a scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco,California,USA: 785-794. [39] Conroy T.2010. Using nuclear magnetic resonance data for grain size estimation and expandable sand screen design. SPWLA 51st Annual Logging Symposium. [40] Faga A T,Oyeneyin B M.2000. Application of neural networks for improved gravel-pack design. SPE: 58722. [41] Folk R L,Ward W C.1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27: 3-26. [42] Friedman G M,Johnson K G.1982. Exercises in Sedimentology. New York: John Wiley and Sons,68-83. [43] Hurst A R.1990. Natural gamma-ray spectrometry in hydrocarbon-bearing sandstones from the Norwegian Continental Shelf. Geological Society,London,Special Publications, 48(1): 211-222. [44] McManus J.1988. Grain Size Determination and Interpretation. Tucker Med. Techniques in Sedimentology. Oxford: Wiley Blackwell,63-85. [45] Xin Y,Wang G W,Liu B C,Ai Y,Cai D Y,Yang S W,Liu H K,Xie Y Q,Chen K J.2022. Pore structure evaluation in ultra-deep tight sandstones using NMR measurements and fractal analysis. Journal of Petroleum Science and Engineering, 211: 110-180. [46] Yuan G H,Cao Y C,Qiu L W.2017. Genetic mechanism of high-quality reservoirs in Permian tight fan delta conglomerates at the northwestern margin of the Junggar Basin,north western China. AAPG Bulletin, 101(12): 1995-2019.