SU—WAN BLOCK: AN INDEPENDENT TECTONIC UNIT DURING PERIOD OF TETHYAN EVOLUTION
Wu Genyao Chen Huanjiang Ma Li Xu Keding
1Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029
2Dept. of Marine Geology & Geophysics,Tongji University, Shanhai
3 Jiangsu Oilfield, SINOPEC, Jiangsu Jiangdu
4 Zhejiang Division of Petroleum Exploration, CNPC, Zhejiang
Based on the basement features, the unique sedimento-igneous formation and deformation of the Sinian—Mesozoic, and the exclusive chatacters for regional mineralization and tectono-thermal events, as well as the paleomagnetic data, the Su—Wan (an abbreviation for Jiangsu and Anhui Provinces) Block might be considered as an independent tectonic unit during the period of Tethyan evolution. The Su—Lu (an abbreviation for Jiangsu and Shandong Provinces) Ocean, which once separated the Su—Wan Block from the North China Craton, finally closed in Late Jurassic and Early Cretaceous, and the Su—Lu Orogen was a part of the East Asian Yanshanides. The Early Precambrian of the Su—Wan Block might be a part of the North China Craton. It drifted away, and correspondingly, the Su—Lu Ocean opened in Middle-Late Proterozoic. The Su—Wan Block attached to the Yangtze tectonic domain during the Sinan and Early Paleozoic, and its sedimento-volcanic formation and deformation had some differences from that of the Yangtze Craton. The global tectonic framework changed greatly from Devonian when the Paleotethyan oceanic basins opened. Glacial activity and cold water faunas characterized the Gondwana in Permian, while a mantle plume recorded by eruption of the Emeishan basalt featured the Yangtze Craton. During that time the Su—Wan Block, not affected by the mantle plume, might be a median block in the Paleotethyan marine, which was evidenced by the sediments being affected by the glacial activity and the mixed faunas (although no cold water faunas discovered). In other words, The Su—Wan Block must have been independent away from the Yangtze Craton since the latest Carboniferous. The Su—Lu Ocean once subducted in Triassic, but not closed, so the Late Triassic plant fossils in Su—Wan Block differed from that of the Yangtze Craton. The remained ocean subducted and closed in Late Jurassic and Early Cretaceous, indicated by the widely occurred Andean-type arc magmatism. From then on the Su—Wan Block collided with the North China Craton and became a part of the embryonic Asia continent.
About author: Wu Genyao, born in 1946, is a researcher (professor) at the Institute of Geology and Geophysics, Chinese Academy of Sciences. He has been working on the Tethysides in South China, and explorating the relation between orogenic process and coupled basin developing since 1987.
Cite this article:
. SU—WAN BLOCK: AN INDEPENDENT TECTONIC UNIT DURING PERIOD OF TETHYAN EVOLUTION[J]. JOURNAL OF PALAEOGEOGRAPHY, 2002, 4(2): 77-87.
. SU—WAN BLOCK: AN INDEPENDENT TECTONIC UNIT DURING PERIOD OF TETHYAN EVOLUTION[J]. JOPC, 2002, 4(2): 77-87.
[1] 胡受奚,孙景贵. 1999. 涉及江苏省的几个重大地质问题. 江苏地质, 23(4):193-196.
[2] 杨志坚. 1987. 横贯中国东南部的一条古断裂带. 地质科学, (3):221-230.
[3] 常印佛, 刘湘培, 吴言昌. 1991. 长江中下游铜铁成矿带. 北京:地质出版社. 379.
[4]康永成, 吴言昌, 储国正, 等. 1998. 安徽沿江地区铜-多金属矿床地质. 北京:地质出版社. 351.
[5] 朱炳泉. 1997. 地球化学急变带及对中国南方油气勘探的思考. 海相油气地质, 2(4):1-3.
[6] 陈华成,吴其切,等. 1989. 长江中下游地层志(寒武-第四系).合肥:安徽科学技术出版社. 789.
[7] 翟裕生, 姚书振, 林新多, 等. 1992. 长江中下游地区铁铜(金)成矿规律. 北京:地质出版社. 235
[8] 冯增昭,彭勇民,金振奎,等. 2001. 中国南方寒武纪和奥陶纪岩相古地理. 北京:地质出版社. 221.
[9] 冯增昭,杨玉卿,鲍志东,等. 1998. 中国南方石炭纪岩相古地理. 北京:地质出版社. 119.
[10] 岳文浙,业治铮,魏乃颐,等. 1993. 长江中下游威宁期沉积地质与块状硫化物矿床. 北京:地质出版社. 163.
[11] 冯增昭,何幼斌,吴胜和,等. 1991. 中下扬子地区二叠纪岩相古地理. 北京:地质出版社. 282.
[12] 冯增昭,杨玉卿,金振奎,等. 1997. 中国南方二叠纪岩相古地理. 东营:石油大学出版社. 242.
[13] 陈学方,方念乔,方建勤,等. 2001. 南京孔山剖面早二叠世冰川旋回期内氧碳同位素演化特征及其环境意义. 现代地质, 15(1):40-45.
[14] 江苏省地质矿产局. 1984. 江苏省及上海市区域地质志. 北京:地质出版社. 857.
[15] 江苏石油勘探局地质科学研究院,中国科学院南京地质古生物研究所. 1988. 江苏地区下扬子准地台震旦纪-三叠纪生物地层. 南京:南京大学出版社. 315-368.
[16] 冯增昭.1987. 下扬子地区中、下三叠统青龙群岩相古地理研究. 昆明:云南科技出版社. 1-69.
[17] 刘志丽,童金南. 2001. 中国南方中三叠世地层及沉积古地理分异. 沉积学报,19(3):327-332.
[18] 邓晋福,叶德隆,赵海玲,等. 1992. 下扬子地区火山作用深部过程和盆地形成. 武汉:中国地质大学出版社. 184.
[19] 任启江,刘孝善,徐兆文,等. 1991. 安徽庐枞中生代火山构造洼地及其成矿作用. 北京:地质出版社. 206.
[20] 倪若水,吴其切,岳文浙,等. 1998. 长江中下游中生代陆相盆地演化与成矿作用. 上海:上海科学技术文献出版社. 118.
[21] 周珣若,任 进. 1994. 长江中下游中生代花岗岩. 北京:地质出版社. 119.
[22] 杨文采,胡振远,程振炎,等. 1999. 郯城-涟水综合地球物理剖面. 地球物理学报,42(2):206-217.
[23] 宁芜研究项目编写小组. 1978. 宁芜玢岩铁矿. 北京:地质出版社. 196.
[24] 中国科学院地球化学研究所. 1987. 宁芜型铁矿形成机理. 北京:科学出版社. 152.
[25] 樊金涛. 1996. 苏北东海晋宁期蛇绿岩与苏胶造山带演化. 江苏地质, 20(1):1-8.
[26] 樊金涛. 1998. 苏北蛇绿岩. 桂林工学院学报. 18(2):136-144.
[27] 徐安中. 1998. 苏北云台群含蓝晶石岩石矿物组合特征及其地质意义. 江苏地质, 22 (1):10-14.
[28] 潘明宝. 1998. 江苏大地构造研究与展望. 江苏地质, 22 (增刊):12-16.
[29] 吴根耀. 1997. 湘鄂赣皖交界区的湖盆演化及其控制因素. 大地构造与成矿学. 21(3):251-261.
[30] 徐树桐,周海远,董树文,等. 1987. 安徽省主要构造地质要素的变形和演化. 北京:海洋出版社. 66-68.
[31] 安徽省地质矿产局. 1987. 安徽省区域地质志. 北京:地质出版社. 721.
[32] 陈沪生(执笔). 1988. 扬子准地台下扬子盆地HQ-13线地球物理-地质综合解释纲要. 见:欧庆贤主编,中国南方油气勘查新领域探索论文集第2辑. 北京:地质出版社. 239-250.
[33] Hayama Y, Inomata M, Koido Y, et al. 1996. Comparative geological study between Fujian region in China and Inner Zone of southeast Japan. Scientia Geologica Sinica, 5(4):425-434.
[34] Yin A and Nie S Y. 1993. An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12(4):801-813.
[35] Liou J G, Zhang R Y, Wang X, et al. 1995. Metamorphism and tectonics of HP and UHP belts in the Dabie-Sulu region, China. In: Yin A and Harrison T M. eds. Tectonic Evolution of Asia. Cambridge:Cambridge Univ. Press. 345-370.
[36] Wu G Y. 1999. Main tectonic units and geological evolution in South China and its environs: in the light of Gondwana dispersion and Asian accretion. In: Metcalfe I. ed. in chief. Gondwana Dispersion and Asian Accretion. Rotterdam: A.A.Balkema. 315-340.
[37] 吴根耀,马 力,钟大赉,等. 2001. 滇桂交界区印支期增生弧型造山带:兼论与造山作用耦合的盆地演化. 石油实验地质,23(1): 8-18.
[38] 黄开年,Opdyke K N,Kent D V,等. 1985. 峨眉山玄武岩的一些古地磁新结果. 科学通报,31(2):133-137.
[39] Chung S L, Jahn B M, Wu G Y, et al. 1998. The Emeishan flood basalt in SW China: a mantle plume initiation model and its connection with continental breakup and mass extinction at the Permian-Triassic boundary. In: Flower M F J et al. eds. Mantle Dynamics and Plate Interactions in East Asia. Washington D C: American Geophysical Union. 47-58.
[40] 张永鸿. 1996. 地星演化(球面构造地质学立论基础). 南京:南京大学出版社. 552.
[41] 钟大赉,等. 1998. 滇川西部古特提斯造山带. 北京:科学出版社. 231.
[42] 吴汉宁,常承法,刘 椿,等. 1990. 依据古地磁资料探讨华北与华南块体运动及其对秦岭造山带构造演化的影响. 地质科学,(3):201-214.
[43] Zorin Y A, Belichenko V G, Turutanov E K, et al. 1995. The East Siberia transect. International Geol. Review, 37:154-175
[44] Hada S, Ishii K, Landis C A, et al. 2001. Kurosegawa terrane in southwest Japan: disrupted remnants of a Gondwana-derived terrane. Gondwana Research, 4(1): 27-38.
[45] 邵济安,唐克东,等. 1995. 中国东北地体与东北亚大陆边缘演化. 北京:地震出版社. 185.
[46] Wu Genyao, Yano T and Inomata M. 1998. Yanshanian orogenics in South China: a relation to Neotethyan evolution. Scientia Geologica Sinica, 7(1):1-10.