Characteristics and its palaeoenvironmental significance of the Middle-Upper Cambrian dolostones of Gudongkou section at Xingshan, Hubei Province
Yuan Xinpeng1,2 Liu Jianbo1,3,4
1 School of Earth and Space Sciences,Peking University,Beijing 100871 2 SINOPEC International Petroleum Exploration & Production Corporation, Beijing 100029 3 Key Laboratory of Orogenic Belts and Crustal Evolution(Peking University),Ministry of Education,Beijing 100871 4 State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences,Nanjing 210008, Jiangsu
Abstract The dolostone was extensively deposited in the Middle-Upper Cambrian of the Upper Yangtze Platform,South China.It was formed in particular palaeoclimatic and palaeooceanographical environment,however,there still exist debates about its sedimentary environment and genesis.In this paper,based on the fine sedimentary research both in field and in laboratory,8 lithofacies types and 3 sedimentary cycles were identified,with the majority of the carbonates deposited in the subtidal zone or in the shaly basin of shallow marine carbonate platform,in the Middle-Upper Cambrian Qinjiamiao Group and Sanyoudong Group at Gudongkou section in Xingshan,Hubei Province.By overlapping sedimentary cycles and computing Fischer plots,the history of accommodation change of the Upper Yangtze Platform during Middle-Late Cambrian was analyzed,and 18 fourth-and 7 third-order cycles,which have preliminarily made up the curve of high-frequency relative sea-level change was identified.The temporal-spatial distribution of sedimentary facies in the Upper Yangtze Platform suggests that the relative sea-level of the platform was gradually dropping from Middle Cambrian to Late Cambrian,resulting in the sedimentary environment changing from shaly basin(or deep subtidal)to shallow subtidal,and the sedimentary facies changing from relatively-deep-water mixed deposition of terrigenous debris and carbonate sediments to relatively-shallow-water carbonate deposition.The sedimentary characteristics in the Upper Yangtze Platform during Middle-Late Cambrian are consistent with the global change,indicating the unique global “super-greenhouse” palaeoclimate and internal-platform relatively-high-salinity palaeoceanography.
Corresponding Authors:
About the corresponding author:Liu Jianbo,born in 1966,is engaged in palaeontology,sedimentology,and palaeoenvironment changes.E-mail:jbliu@pku.edu.cn.
About author: Yuan Xinpeng,born in 1985,is a Ph.D.candidate of palaeontology and stratigraphy.E-mail: yuanxinpeng2011@hotmail.com.
Cite this article:
Yuan Xinpeng,Liu Jianbo. Characteristics and its palaeoenvironmental significance of the Middle-Upper Cambrian dolostones of Gudongkou section at Xingshan, Hubei Province[J]. JOURNAL OF PALAEOGEOGRAPHY, 2013, 15(3): 363-382.
Yuan Xinpeng,Liu Jianbo. Characteristics and its palaeoenvironmental significance of the Middle-Upper Cambrian dolostones of Gudongkou section at Xingshan, Hubei Province[J]. JOPC, 2013, 15(3): 363-382.
陈旭,阮亦萍,彭善池,等.2001.中国古生代气候演变[M].北京:科学出版社,14-20. 党皓文,刘建波,袁鑫鹏.2009.湖北兴山中寒武统覃家庙群微生物岩及其古环境意义[J].北京大学学报(自然科学版),45(2): 289-298. 邓长瑜,张秀莲,陈建文, 等. 2004.黔东南地区寒武系碳酸盐岩成岩作用分析[J].沉积学报,22(4): 588-596. 董桂玉,陈洪德,何幼斌,等.2007.陆源碎屑与碳酸盐混合沉积研究中的几点思考[J].地球科学进展,22(9):931-939. 房亮,刘建波,詹仁斌.2012.寒武纪—奥陶纪管状岩的盛衰及其与环境演化的协同[J].中国科学(D辑):地球科学,42(1): 117-129. 冯增昭.1989.碳酸盐岩岩相古地理学[M].北京:石油工业出版社,1-188. 冯增昭,彭勇民,金振奎,等.2001a.中国南方寒武纪和奥陶纪岩相古地理[M].北京: 地质出版社,1-221. 冯增昭,彭勇民,金振奎,等.2001b.中国南方寒武纪岩相古地理[J].古地理学报,3(1): 1-14. 冯增昭,彭勇民,金振奎,等.2004.中国寒武纪和奥陶纪岩相古地理[M].北京:石油工业出版社,1-233. 刘宝珺,许效松.1994.中国南方岩相古地理图集(震旦纪—三叠纪)[M].北京: 科学出版社,1-239. 罗惠麟,蒋志文,唐良栋.1993.论陡坡寺组[J].地层学杂志,17(4): 266-271. 马永生,陈洪德,王国力,等.2009.中国南方层序地层与古地理学[M].北京: 地质出版社,2-266. 梅冥相.1993.碳酸盐岩米级旋回层序的成因类型及形成机制[J].沉积与特提斯地质,13(6): 34-43. 梅冥相.2007.上扬子区寒武系娄山关群白云岩层序地层格架及其古地理背景[J].古地理学报,9(2): 117-132. 梅冥相,高金汉.2005a.岩石地层学的相分析方法与原理[M].北京: 地质出版社,1-287. 梅冥相,马永生,邓军,等.2005b.上扬子区下古生界层序地层格架的初步研究[J].现代地质,19(4): 550-562. 梅冥相,刘智荣,孟晓庆,等.2006a.上扬子区中—上寒武统的层序地层划分和层序地层格架的建立[J].沉积学报,24(4): 617-626. 梅冥相,张海,孟晓庆,等.2006b.上扬子区中寒武统的层序地层格架及其形成的古地理背景[J].高校地质学报,12(3): 328-343. 梅冥相,马永生,张海,等.2007.上扬子区寒武系的层序地层格架:寒武纪生物多样性事件形成背景的思考[J].地层学杂志,31(1):68-78. 门玉澎,许效松,牟传龙,等.2010.中上扬子寒武系蒸发岩岩相古地理[J].沉积与特提斯地质,30(3): 58-64. 彭善池.2008.华南寒武系年代地层系统的修订及相关问题[J].地层学杂志,32(3): 239-245. 彭善池.2009.华南新的寒武纪生物地层序列和年代地层系统[J].科学通报,54(18): 2691-2698. 蒲心纯,周浩达,王熙林,等.1993.中国南方寒武纪岩相古地理与成矿作用[M].北京: 地质出版社,1-191. 沙庆安.2001.混合沉积和混积岩的讨论[J].古地理学报,3(3):63-66. 盛贤才,郭战峰,刘新民.2009.秦岭—大别造山带南侧兴山地区中上寒武统白云岩储集层特征[J].石油实验地质,31(2): 172-176. 苏德辰,李庆谋,罗光文,等.1995.Fischer图解及其在旋回层序研究中的应用:以北京西山张夏组为例[J].现代地质,9(3): 279-283. 孙乘云.1993.皖南东至地区寒武纪地层新知[J].中国区域地质,(1): 85-93. 王钰.1938.湖北峡东“宜昌石灰岩”的时代问题[J].地质论评,3(2): 131-142. 项礼文,周天梅,倪世钊,等.1987.长江三峡地区生物地层学(2): 早古生代分册:寒武系[M].北京:地质出版社,4-17. 项礼文,朱兆玲,李善姬,等.1999.中国地层典(寒武系)[M].北京: 地质出版社,1-95. 袁鑫鹏,袁金良,刘建波,等.2009.湖北兴山寒武系覃家庙群底部三叶虫化石的地层学意义[J].地层学杂志,33(1): 48-55. 袁鑫鹏,刘建波.2012.渗透回流模式白云岩研究历史与进展[J].古地理学报,14(2):219-228. 张秀莲,于德龙,王贤.2003.湖北宜昌地区寒武系碳酸盐岩岩石学特征及沉积环境[J].古地理学报,5(2): 152-161. 赵元龙,袁金良,张正华,等.1993.华南过渡区凯里组及同期地层的初步研究[J].地层学杂志,17(3): 170-178. 周雁,陈洪德,王成善,等.2003.中扬子区寒武纪层序地层研究[J].沉积与特提斯地质,23(3): 65-72. Bambach R K,Knoll A,Wang S C. 2004.Origination,extinction,and mass depletions of marine diversity[J].Paleobiology,30(4): 522-542. Berner R A.2004.The Phanerozoic Carbon Cycle: CO2 and O2[M].Oxford: Oxford University Press,1-150. Berner R A.2005.The Rise of Trees and How They Changed Paleozoic Atmospheric CO2,Climate,and Geology[A]. In: Ehleringer J R,Cerling T E,Dearing M D(eds). A History of Atmospheric CO2 and Its Effects on Plants,Animals,and Ecosystems.New York:Springer,1-7. Ding Yu,Bai Ziqiang,Liu Jianbo, et al. 2008.Multiple origins of flat-pebble conglomerate and sedimentary environments of the Gushan Formation at Tangwangzhai in Shandong Province[J].Journal of Palaeogeography,10(2): 125-138. Dunham R J.1962.Classification of Carbonate Rocks According to Depositional Texture [A]. In: Ham W E (ed). Classification of Carbonate Rocks.American Association of Petroleum Geologists Memoir 1:108-121. Elrick M,Read J F.1991.Cyclic ramp-to-basin carbonate deposits,Lower Mississippian,Wyoming and Montana: A combined field and computer modeling study[J].Journal of Sedimentary Research,61(7): 1194-1224. Enos P.1977.Holocene Sediment Accumulation of the South Florida Shelf Margin[A]. In: Enos P,Perkins R D(eds).Quaternary Sedimentation in South Florida. Geological Society of America, Memoir 147:1-130. Fischer A G.1964.The Lofer cyclothems of the Alpine Triassic[J].Geological Survey of Kansas Bulletin,169: 107-149. Gaffin S. 1987. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change [J].American Journal of Science, 287(6):596-611. Gaines R R,Mering J A,Zhao Y, et al. 2011.Stratigraphic and microfacies analysis of the Kaili Formation,a candidate GSSP for the Cambrian Series 2-Series 3 boundary[J].Palaeogeography,Palaeoclimatology,Palaeoecology,311(3-4): 171-183. Given R K,Wilkinson B H.1987.Dolomite abundance and stratigraphic age: Constraints on rates and mechanisms of Phanerozoic dolostone formation[J].Journal of Sedimentary Research,57(6): 1068-1078. Goldhammer R K,Lehmann P J,Dunn P A.1993.The origin of high-frequency platform carbonate cycles and third-order sequences(Lower Ordovician El Paso Gp,West Texas): Constraints from outcrop data and stratigraphic modeling[J].Journal of Sedimentary Research,63(3): 318-359. Hine A C,Wilber R J,Neumann A C.1981.Carbonate sand-bodies along contrasting shallow-bank margins facing open seaways,northern Bahamas[J].AAPG Bulletin,65:261-290. Husinec A,Basch D,Rose B, et al. 2008.FISCHERPLOTS: An Excel spreadsheet for computing Fischer plots of accommodation change in cyclic carbonate successions in both the time and depth domains[J].Computers & Geosciences,34(3): 269-277. Koerschner W F,Read J F.1989.Field and modelling studies of Cambrian carbonate cycles,Virginia Appalachians[J].Journal of Sedimentary Petrology,59:654-687. Liu Jianbo,Zheng Zhaochang.1998.Stacking patterns and correlation of meter-scale shallowing-upward cycles in the Lower Ordovician(Middle Arenigian to Llanvirnian)carbonates in Pingquan and Qinglongshan,North China[J].The Journal of the Geological Society of Japan,104(5): 327-345. Mount J F.1984.Mixing of siliclastics and carbonate sediments in shallow shelf environments[J].Geology,12(7): 432-435. Myrow P M,Tice L,Archuleta B, et al. 2004.Flat-pebble conglomerate: Its multiple origins and relationship to metre-scale depositional cycles[J].Sedimentology,51(5): 973-996. Osleger D A,Read J F.1991.Relation of eustasy to stacking patterns of meter-scale carbonate cycles,Late Cambrian,U.S.A.[J].Journal of Sedimentary Petrology,61(7): 1225-1252. Osleger,D A,Read J F.1993.Comparative analysis of methods used to define eustatic variations in outcrop: Late Cambrian interbasinal sequence developments[J].American Journal of Science,293(3): 157-216. Riding R.2006.Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J].Sedimentary Geology,185(3-4): 229-238. Rowland S M,Shapiro R S.2002.Reef Patterns and Environmental Influences in The Cambrian and Earliest Ordovician [A]. In: Kiessling W,Flügel E,Golonka J(eds).Phanerozoic Reef Patterns.SEPM Special Publication 72,95-128. Sadler P M,Osleger D A,Montanez I P.1993.On the labeling,length,and objective basis of Fischer plots[J].Journal of Sedimentary Petrology,63(3): 360-368. Schlager W.2003.Benthic carbonate factories of the Phanerozoic[J].International Journal of Earth Sciences,92(4): 445-464. Sepkoski J J.1993.Ten years in the library: New data confirm paleontological patterns[J].Paleobiology,19(1):43-51. Walker L J,Wilkinson B H,Ivany L C.2002.Continental drift and Phanerozoic carbonate accumulation in shallow-shelf and deep-marine settings[J].Journal of Geology,110(1): 75-87. Warren J.1999.Evaporites: Their Evolution and Economics[M].Oxford: Blackwell Science,1-438. Wilson J E.1975.Carbonate Facies in Geologic History[M].New York: Springer-Verlag,471.