Cretaceous sedimentary succession of eolian sandstones in Zhangye Region of Gansu Province:Sedimentological response to the Cretaceous uplift of Qilian Mountains
Mei Mingxiang1,Su Dechen2
1 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083; 2 State Key Laboratory of Continental Structure and Dynamics,Institute of Geology,Chinese Academy of Geological Sciences,Beijing 100037
Abstract Studies on the uplift process of the Qilian Mountains and its sedimentological response are meaningful for the further understanding of the formation of the Tibetan Plateau and its impact of environment in Asia. The Lower Cretaceous in the Zhangye Region of Gansu Province, which is genetically controlled by the uplift process of the Qilian Mountains,can be subdivided into the Chijinpu, Xiagou and Zhonggou Formations. Their sedimentary features can be summarized as follows:(1)a course clastic rock succession can reflect the phenomenon of “rain shadow effect”,i e.,the Chijinpu Formation with the restricted distribution in space and the thickness of more than 1000 meters,which is made up of the cyclic succession of sedimentary facies characterized by the “alluvial fan(or fluvial fan-braided river-eolian sand dune of the lake shore facies”;(2)a set of red beds that is composed of more eolian sand dunes of the lake shore facies in the margin areas of the basin,i e., the Xiagou Formation,which probably represents the product of a more obvious period of the “rain shadow effect”that is correspond to the rapid and strong uplift process of the Qilian Mountains;(3)a succession from the alluvial system to the lake system with the more widespread spatial distribution,i e., the Zhonggou Formation, which belongs to the product formed in moist climate setting without the rain shadow effect and is genetically related to the equilibrium uplift of the Qilian Mountains;(4)The generally absence of the Upper Cretaceous in the study area is probably genetic related to the unloading of Qilian Mountains that leads to the isostasy rebounding in front of mountains. Therefore,a particularly sedimentary succession with the development of eolian sandstones from the Chijinpu Formation to the Xiagou Formation in the study area,which is characteristic of a sedimentary succession of both a composition of special sedimentary facies and their evolutionary succession,not only becomes an important substance record for the further understanding of the Cretaceous uplift of the Qilian Mountains, but also provides another important record for the reconstruction of the atmospheric circle pattern in the East Asia.
About author: Mei Mingxiang,born in 1965,graduated from China University of Geosciences(Beijing) and obtained his Ph D. degree in 1993. Now he is a professor at School of Earth Sciences and Resources, China University of Geosciences(Beijing),and is engaged in sedimentology.
Cite this article:
Mei Mingxiang,Su Dechen. Cretaceous sedimentary succession of eolian sandstones in Zhangye Region of Gansu Province:Sedimentological response to the Cretaceous uplift of Qilian Mountains[J]. JOPC, 2014, 16(2): 143-156.
Mei Mingxiang,Su Dechen. Cretaceous sedimentary succession of eolian sandstones in Zhangye Region of Gansu Province:Sedimentological response to the Cretaceous uplift of Qilian Mountains[J]. JOPC, 2014, 16(2): 143-156.
安芷生,张培震,王二七,等. 2006. 中新世以来我国季风—干旱环境演化与青藏高原的生长[J]. 第四纪研究, 26(5): 678-693
崔晓庄,江新胜,伍皓,等. 2012. 青藏高原东缘盐源盆地古近纪风成沙丘及其古地理意义[J]. 古地理学报, 14(5): 571-582
甘肃省地质矿产局. 1989. 甘肃省区域地质志[M]. 北京:地质出版社,1-692
江新胜,潘忠习. 2005. 中国白垩纪沙漠与气候[M]. 北京:地质出版社,1-117
江新胜,蔡习尧,潘忠习,等. 2009. 塔里木盆地西南部早白垩世风成沙丘古风向测量与古风带恢复[J]. 沉积与特提斯地质, 29(4): 1-4
江新胜,崔晓庄,伍皓,等. 2012. 青藏高原东缘古近纪沙漠及其对季风起源的启示[J]. 沉积与特提斯地质, 32(3): 54-63
李海兵,杨经绥. 2004. 青藏高原北部白垩纪隆升的证据[J]. 地学前缘, 11(4): 345-359
刘东生,郑绵平,郭正堂. 1998. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性[J]. 第四纪研究, 18(3): 194-203
梅冥相,苏德辰. 2013. 青藏高原隆升的沉积学响应:来自甘肃酒泉地区新生代风成砂岩的启示[J]. 古地理学报, 15(3): 351-361
梅冥相,于炳松,靳卫广. 2004. 塔里木盆地库车坳陷白垩纪层序地层格架及古地理演化[J]. 古地理学报, 6(3): 261-178
潘良云,谢结来,李明杰,等. 2006. 酒泉盆地白垩纪—新生代区域构造演化与油气勘探[J]. 石油与天然气地质, 27(1): 62-69
施雅风,李吉均,李炳元,等. 1999. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 54(1): 10-20
唐玉虎,戴霜,黄永波,等. 2008. 兰州—民和盆地河口群沉积相和岩石磁化率:祁连山白垩纪隆升的记录[J]. 地学前缘, 15(2): 261-271
王成善,胡修绵. 2005. 白垩纪世界与大洋红层[J]. 地学前缘, 12(2): 11-21
王成善,曹珂,黄永健. 2009a. 沉积记录与白垩纪地球表层系统变化[J]. 地学前缘, 16(5): 1-14
王成善,戴紧根,刘志飞,等. 2009b. 西藏高原与喜马拉雅的隆升历史和研究方法:回顾与进展[J]. 地学前缘, 16(3): 1-30
王成善,郑和荣,冉波,等. 2010. 活动古地理重建的实践与思考:以青藏特提斯为例[J]. 沉积学报, 28(5): 849-860
王崇孝,马国福,周在华. 2005. 酒泉盆地中、新生代构造演化及沉积充填特征[J]. 石油勘探与开发, 32(1): 33-36
伍皓,崔晓庄,熊国庆,等. 2011. 甘肃皋兰—白银—靖远地区早白垩世沙漠沉积的特征及其古风带恢复[J]. 地质通报, 30(7): 1077-1084
许欢,柳永清,旷宏伟等. 2013. 华北晚侏罗世—早白垩世风成砂沉积及其古地理和古生态学意义[J]. 古地理学报, 15(1): 11-30
许志琴,蔡志慧,张泽明,等. 2008a. 喜马拉雅东构造结南迦巴瓦构造及组构运动学[J]. 岩石学报, 24(7): 1463-1477
许志琴,李海兵,唐哲民,等. 2011a. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报, 27(11): 3157-3170
许志琴,李廷栋,杨经绥,等. 2008b. 大陆动力学的过去、现在和未来:理论与应用[J]. 岩石学报, 24(7): 1433-1444
许志琴,杨经绥,李海兵,等. 2011b. 印度—亚洲碰撞大地构造[J]. 地质学报, 85(1): 1-33
杨经绥,许志琴,张建新,等. 2009. 中国主要高压—超高压变质带的大地构造背景及俯冲/折返机制的探讨[J]. 岩石学报, 25(7): 1529-1560
杨雨. 1997. 甘肃省岩石地层[M]. 湖北武汉:中国地质大学出版社,1-314
张二朋,顾其昌,郑文林. 1998. 西北区区域地层[M]. 湖北武汉:中国地质大学出版社,1-221
Arnott R W C,Zaitlin B A,Potocki D J. 2002. Stratigraphic response to sedimentation in a netaccommodationlimited setting,Lower Cretaceous Basal Quartz,southcentral Alberta[J]. Bulletin of Canadian Petroleum Geology, 50(1): 92-104
Blair T C,Mcpherson J G. 1994. Alluvialfans and their natural distinction from rivers based on morphology,hydraulic processes,sedimentary processes,and facies assemblages[J]. Journal of Sedimentary Research, 64: 450-489
Bridge J S. 2006. Fluvial facies models:Recent developments[A]. In:Posamentier H W,Walker R G(eds). Facies Models Revisted[M]. SEPM:Society for Sedimentary Geology,85-170
Catuneanu O. 2006. Principles of Sequence Stratigraphy[M]. Amsterdam:Elsevier,1-375
Catuneanu O,Abreu V,Bhattacharya J P, et al. 2009. Towards the standardization of sequence stratigraphy[J]. EarthScience Reviews, 92: 1-33
Ghazi S,Mountney N P. 2009. Facies and architectural element analysis of a meandering fluvial succession:The Permian Warchha Sandstone,Salt Range,Pakistan[J]. Sedimentary Geology, 221: 99-126
Gibling M R,Tandon S K,Sinha R, et al. 2005. Discontinuitybounded alluvial sequences of the southern Gangetic Plains,India:Aggradation and degradation in response to monsoonal strength[J]. Journal of Sedimentary Research, 75: 369-385
Hajek E A,Heller P L. 2012. Flowdepth scaling in alluvial architecture and nonmarine sequence stratigraphy:Example from the Castlegate sandstone,central Utah,U.S.A.[J]. Journal of Sedimentary Research, 82: 121-130
Hallam A. 1985. A review of Mesozoic climates[J]. Journal of the Geological Society(London), 142: 433-445
Holbrook J M,Scott R W,ObohIkuenobe F E. 2006. Baselevel buffers and buttresses:A model for upstream versus downstream control on fluvial geometry and architecture within sequences[J]. Journal of Sedimentary Research, 76: 162-174
Holz M,Kalkreuth W,Banerjee Ⅰ. 2002. Sequence stratigraphy of paralic coal-bearing strata:An overview[J]. International Journal of Coal Geology, 48: 147-179
Jinnah Z A,Roberts E M. 2011. Facies associations,paleoenvironment,and baselevel changes in the Upper Cretaceous Wahweap Formation,Utah,U.S.A.[J]. Journal of Sedimentary Research, 81: 266-283
Leleu S,Hartley A,Williams B P J. 2009. Largescale alluvial architecture and correlation in a Triassic pebbly braided river system,lower Wolfville Formation(Fundy Basin,Nova Scotia,Canada)[J]. Journal of Sedimentary Research, 79: 265-286
Loope D B,Mason J A,Dingus L. 1999. Lethal sandslides from eolian dunes[J]. Journal of Geology, 107: 707-713
Marshall J R,Bull P A,Morgan R M. 2012. Energy regimes for aeolian sand grain surface textures[J]. Sedimentary Geology, 253-254: 17-24
Mei M X,Yu B S,Jin W G. 2004. Sequence stratigraphy of the desert system: A Case study of the Lower Cretaceous in the Kuqa Basin in Xinjiang,northwestern China[J]. Acta Geologica Sinica(English Edition), 78(3): 744-755
Mountney N P. 2006. Eolian Facies Models[A]. In:Posamentier H W,Walker R G(eds). Facies Models Revisted[M]. Tulsa:SEPM Special Publication 84,19-84
Nichols G. 2009. Aeolian Environments[A]. In:Nichols G(ed). Sedimentology and Stratigraphy[M]. Chichester of UK:WileyBlackwell,114-128
Olsen T,Steel R,Hgseth K, et al. 1995. Sequential architecture in a fluvial succession:Sequence stratigraphy in the Upper Cretaceous Mesaverde Group,Price Canyon,Utah[J]. Journal of Sedimentary Research, B65: 265-280
Plint A,McCarthy P,Faccini U. 2001. Nonmarine sequence stratigraphy:Updip expression of sequence boundaries and systems tracts in a highresolution framework,Cenomanian Dunvegan Formation,Alberta foreland basin,Canada[J]. AAPG Bulletin, 85: 1967-2001
Sellwood B W,Valdes P J. 2006. Mesozoic climates:General circulation models and the rock record[J]. Sedimentary Geology, 190: 269-287
Shanley K,McCabe P. 1994. Perspective on the sequence stratigraphy of continental strata[J]. AAPG Bulletin, 78: 544-568
Simpson E L,HilbertWolf H L,Simpson W S, et al. 2008. The interaction of aeolian and fluvial processes during deposition of the Upper Cretaceous capping sandstone member,Wahweap Formation,Kaiparowits Basin,Utah,U.S.A.[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 270: 19-28
Skelton P W. 2003. The Cretaceous World[M]. London:Cambridge University Press,1-350.