Abstract The Upper Carboniferous carbonate rocks,with 100meters thickness and abundant fossils,were well developed in Susong area of Anhui Province. These rocks belonged to the typical shallow carbonate platform deposits. The grains quantitative analysis showed that the lithofacies mainly included grainstones and packstones with the content of 81.2% and 69.6% respectively; and shallow marine bioclasts predominated. Moreover,there were wackstones and lime mudstones with the grains content of 26.4% and 4.1% respectively. The open-marine platform facies and tidal flat facies were mainly developed in study area,which could be divided into five types of subfacies including intra-platform shoal,intra-platform basin,intra-platform flat and inter-tidal flat and supra-tidal flat. Combining the above characteristics,three long-term transgressive-regressive cycles could be recognized from the Upper Carboniferous. The sea-level changes were characterized by the high frequency short-term sea-level fluctuations superimposing on a long-term sea-level fall. These three cycles were roughly corresponding to the long-term transgressive-regressive cycles in other areas of Yangtze Plate and the same-time strata in Euramerican Plate. It also indicated that the sea-level changes were influenced by alternation of the glacial period and non-glacial period in Gondwana.
Corresponding Authors:
Li Shuangying,born in 1956,is a professor at Hefei University of Technology. Now he is engaged in sedimentary geology and stratigraphy. E-mail: lsysteven@126.com.
About author: Lu Yanlin,born in 1988,is a master degree candidate at Hefei University of Technology. Now she is engaged in sedimentary geology. E-mail: luyanlin511@163.com.
Cite this article:
Lu Yanlin,Li Shuangying,Zhao Daqian et al. Quantitative analysis of carbonate platform sediments and sea-level changes of the Upper Carboniferous in Susong area, Anhui Province[J]. JOPC, 2014, 16(5): 735-746.
Lu Yanlin,Li Shuangying,Zhao Daqian et al. Quantitative analysis of carbonate platform sediments and sea-level changes of the Upper Carboniferous in Susong area, Anhui Province[J]. JOPC, 2014, 16(5): 735-746.
陈华成,等. 1989. 长江中下游地层志·寒武—第四系[M]. 安徽合肥:安徽科学技术出版社,1-289. 冯增昭. 1993. 沉积岩石学(上册)[M]. 北京:石油工业出版社,1-368. 冯增昭,杨玉卿,鲍志东,等. 1998. 中国南方石炭纪岩相古地理[M]. 北京:地质出版社,1-119. Flügel E,著. 马永生,译. 2006. 碳酸盐岩微相:分析、解释及应用[M]. 北京:地质出版社,1-882. 李儒峰,刘本培,赵澄林. 1997. 扬子板块石炭纪层序及其全球性对比研究[J]. 沉积学报,15(3):23-28. 李双应,金福全,黄其胜,等. 2000. 下扬子盆地石炭纪层序地层研究及盆地演化[J]. 安徽地质,10(4):241-247. 刘本培,李儒峰,尤德宏. 1994. 黔南独山石炭系层序地层及麦粒带冰川型全球海平面变化[J]. 地球科学:中国地质大学学报,19(5):553-563. 梅冥相,马永生,邓军,等. 2005. 滇黔桂盆地及其邻区石炭纪至二叠纪层序地层格架及三级海平面变化的全球对比[J]. 中国地质,32(1):13-24. Wilson J L,著. 冯增昭,译. 1993. 地质历史中的碳酸盐相[M]. 北京:地质出版社,1-365. Algeo T J,Wilkinson B H. 1988. Periodicity of Mesoscale Phanerozoic sedimentary cycles and the role of Milankovitch orbital modulation[J]. Journal of Geology,96(3):313-322. Bishop J W,Montaez I P,Gulbranson E L, et al. 2009. The onset of mid-Carboniferous glacio-eustasy:Sedimentologic and diagenetic constraints,Arrow Canyon,Nevada[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,276(1-4):217-243. Bishop J W,Montaneez I P,Osleger D A. 2010. Dynamic Carboniferous climate change,Arrow Canyon,Nevada[J]. Geosphere,6(1):1-34. Blomeier D P G,Reijmer J J G. 2002. Facies architecture of an Early Jurassic carbonate platform slope(Jbel Bou Dahar,High Atlas,Morocco)[J]. Journal of Sedimentary Research,72(4):462-475. Dunham R J. 1962. Classification of carbonate rocks according to depositional texture[J]. AAPG Memoir,108:1-12. Eros J M,Montaez I P,Osleger D A, et al. 2012. Sequence stratigraphy and onlap history of the Donets Basin,Ukraine:Insight into Carboniferous icehouse dynamics[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,313-314:1-25. Everts A J W,Schlager W,Rrijmer J J G. 1999. Carbonate platform-to-basin correlation by means of grain-composition logs:An example from the Vercors(Cretaceous,SE France)[J]. Sedimentology,46(2):261-278. Fielding C R,Frank T D,Birgenheier L P, et al. 2008. Stratigraphic imprint of the Late Paleozoic Ice Age in eastern Australia:A record of alternating glacial and nonglacial climate regime[J]. Journal of the Geological Society,165:129-140. Gulbranson E L,Montaez I P,Schmitz M D, et al. 2010. High-precision U-Pb calibration of Carboniferous glaciation and climate history,Paganzo Group,NW Argentina[J]. Geological Society of America Bulletin,122(9-10):1480-1498. Heckel P H. 1977. Origin of phosphatic black shale facies in Pennsylvanian cyclothems of mid-continent North America[J]. AAPG Bulletin,61(7):1045-1068. Isbell J L,Korch Z J,Szablewski G M, et al. 2008. Permian glacigenic deposits in the Transantarctic Mountains,Antarctic[J]. GSA special papers,441:59-70. Jaanusson V. 1972. Constituent analysis of an Ordovician limestone from Sweden[J]. Lethaia,5(2):217-237. James N P. 1997. The cool-water carbonate depositional realm [A]. In:James N P,Clarke J A D(eds). Cool Water Carbonates[M]. SEPM,47:851-881. Keim L,Schlager W. 2001. Quantitative compositional analysis of a Triasic carbonate platform(Southern Alps,Italy)[J]. Sedimentary Geology,139:261-283. Koch J T,Frank T D. 2011. The Pennsylvanian-Permian transition in the low-latitude carbonate record and the onset of major Gondwanan glaciation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,308(3-4):362-372. Martin L G,Montaez I P,Bishop J W. 2012. A paleotropical carbonate-dominated archive of carboniferous icehouse dynamics,Bird Spring Fm.,Southern Great Basin,USA[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,239-330:64-82. Osleger D,Read J F. 1991. Relation of eustasy to stacking patterns of meter-scale carbonate cycles,Late Cambrian,U.S.A.[J]. Journal of Sedimentary Research,61(7):1225-1252. Rasser M W. 2000. Coralline red algal limestones of the late Eocene alpine Foreland Basin in Upper Austria:Component analysis,facies and paleocology[J]. Facies,42(1):59-92. Read J F. 1998. Phanerozoic carbonate ramps from greenhouse,transitional and ice-house worlds:Clues from field and modelling studies[J]. Journal of the Geological Society of London,149:107-135. Shapiro R S,West R R. 1999. Late Paleozoic stromatolites:New insights from the Lower Permian of Kansas[J]. Lethaia,32:131-139. Shi G R,Chen Z Q. 2006. Lower Permian oncolites from South China:Implications for equatorial sea-level responses to Late Palaeozoic Gondwanan glaciation[J]. Journal of Asian Earth Sciences,26:424-436. Stollhofen H,Werner M,Stanistreet I G, et al. 2008. Single-zircon U-Pb dating of Carboniferous-Permian tuffs,Namibia,and the intercontinental deglaciation cycle framework[J]. Geological Society of America Special Papers,83-96. Van denBerg E H,Meesters A,Kenter J A M, et al. 2002. Automated separation of touching grains in digital images of thin sections[J]. Computers and Geosciences,28(2):179-190. Wanless H R,Shepard F P. 1936. Sea level and climatic changes related to late Paleozoic cycles[J]. Geological Society of America Bulletin,47(8):1177-1206