Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin
Chen Nenggui1, Wang Yanqing1, Xu Feng2, Yang Tiyuan2, Xia Zhiyuan1
1 PetroChina Hangzhou Research Institute of Geology,Hangzhou 310023,Zhejiang 2 Qinghai Oilfield Research Institute of Exploration and Development,PetroChina,Dunhuang 736202,Gansu
Abstract The salt ̄water lacustrine deposition was developed during the Cenozoic in Qaidam Basin,but its salinity and sedimentary response have not been known. Based on boron and clay mineral data,palaeosalinities of the Cenozoic in Qaidam Basin were reconstructed by Couch formula,which testified that: (1) The Cenozoic sediments belonged to the salt ̄water lacustrine deposition with the maximum salinity over 20‰. (2) The zones with different palaeosalinities had different sedimentary responses,that is,the palaeosalinity values of terrigenous clastics supplying areas were commonly less than 12‰,while those of shore-shallow lake ranged from 10‰ to 18‰,and those of semi-deep lake exceeded 18‰. Under the control of salt ̄water with middle to high salinity, the salt water lacustrine deposition in Qaidam Basin has the following characteristics: single layer is thin usually with 1-3 m thickness, sand layer and mud layer are frequently interbedded, delta sedimentary facies belt is relatively narrow, fine grained sediments are distributed in a wide range, and typical lacustrine carbonate rocks, gypsum and terrestrial fine detritus are mixed.
About author: Chen Nenggui,born in 1963,graduated from China University of Geosciences(Beijing)with a masters degree in 1991. Now he is a senior egnineer in PetroChina Hangzhou Research Institute of Geology,and is mainly engaged in reservoir. E-mail: chenng_hz@petroChina.com.cn.
图1 柴达木盆地构造分区 Fig.1 Tectonic division of Qaidam Basin
Cite this article:
Chen Nenggui,Wang Yanqing,Xu Feng et al. Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J]. JOPC, 2015, 17(3): 371-380.
Chen Nenggui,Wang Yanqing,Xu Feng et al. Palaeosalinity characteristics and its sedimentary response to the Cenozoic salt-water lacustrine deposition in Qaidam Basin[J]. JOPC, 2015, 17(3): 371-380.
苟迎春,曹正林,张小军,等. 2014. 咸化湖盆三角洲沉积模拟实验研究[J]. 现代地质,28(6):184-188. 赖志云,赖伟庆,刘震,等. 2006. 湖盆模拟实验沉积学[M]. 北京:石油工业出版社. 李宝利. 1995. 硼元素古盐度计算方法的改进[J]. 复式油气田,6(1):55-58. 李浩,徐艳萍,黄海宁,等. 2002. 柴达木盆地西部地区第三纪古湖泊研究[J]. 断块油气田,9(2):27-30. 李进龙,陈东敬. 2003. 古盐度定量研究方法综述[J]. 油气地质与采收率,10(5):1-3. 刘忠保,赖志云. 1994. 辫状河—扇三角洲形成及演变的水槽实验[J]. 大庆石油地质与开发,13(2):58-62. 苗军. 2000. 柴达木盆地第三纪湖盆古水介质研究[J]. 西安石油学院学报(自然科学版),15(4):22-24. 王敏芳,焦养泉,王正海,等. 2005. 沉积环境中古盐度的恢复:以吐哈盆地西南缘水西沟群泥岩为例[J]. 新疆石油地质,26(6):719-722. 魏继生,文华国,李建兵,等. 2011. 古盐度计算与古地理在塔里木盆地钾盐勘探中的应用[J]. 成都理工大学学报(自然科学版),38(2):185-190. 文华国,郑荣才,唐才,等. 2008. 鄂尔多斯盆地耿湾地区长6段古盐度恢复与古环境分析[J]. 矿物岩石,28(1):114-120. 吴萍,杨振强. 1979. 中南地区白垩纪—第三纪岩相古地理[A]. 见:国家地质总局宜昌地质矿产研究所三室红层组.中南地区白垩纪—第三纪岩相古地理及含矿性[M]. 北京:地质出版社,1-75. 羊向东,王苏民. 2003. 藏南沉错钻孔硅藻组合与湖水古盐度定量恢复[J]. 中国科学(D辑),33(2):163-169. 叶爱娟,朱扬明. 2006. 柴达木盆地第三系咸水湖相生油岩古沉积环境地球化学特征[J]. 海洋与湖沼,37(5):472-480. 伊海生,时志强,朱迎堂,等. 2009. 利用泥岩硼含量重建过去湖相古盐度和湖面变化历史[J]. 湖泊科学,21(1):77-83. 于兴河. 2009. 油气储层地质学基础[M]. 北京:石油工业出版社. 张春生,刘忠保. 2009. 三角洲分流河道及河口坝形成过程的物理模拟[J]. 地学前缘,7(3):168-176. 张敏,尹成明,寿建峰,等. 2004. 柴达木盆地西部地区古近系及新近系碳酸盐岩沉积相[J]. 古地理学报,6(4):391-400. 郑荣才,柳梅青. 1999. 鄂尔多斯盆地长6油层组古盐度研究[J]. 石油与天然气地质,20(1):20-25. Adams T D,Haynes J R,Walker C T. 1965. Boron in Holocene illites of the dovey estuary,wales,and its relationship to palaeosalinity in cyclothems[J]. Sedimentology,4:189-195. Couch E L. 1971. Calculation of paleosalinities from boron and clay mineral data[J]. AAPG Bulletin,55(10):1829-1837. Nelson B. 1967. Sedimentary phosphate method for estimating paleosalinities[J]. Science,158:917-920. Walker C T. 1968. Evaluation of boron as a paleosalinity indicator and its application to offshore prospects[J]. AAPG Bulletin,52(5):751-766. Walker C T,Price N B. 1963. Departure curves for computing paleosalinity from boron in illities and shales[J]. AAPG Bulletin,47(5):833,841.