[1] 冯增昭. 2013. 中国沉积学(第2版). 北京:石油工业出版社. [Feng Z Z. 2013. Sedimentology of China(Second Edition). Petroleum Industry Press]
[2] 梅冥相. 2010. 长周期层序形成机制的探索:层序地层学的进展之二. 古地理学报,12(6):711-728. [Mei M X. 2010. Research on formingmechanism of long-term sequences:The second advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition),12(6):711-728]
[3] 梅冥相. 2011a. 微生物席沉积学:一个年轻的沉积学分支. 地球科学进展,26(6):586-597. [Mei M X. 2011a. Microbial-mat sedimentology:A young branch on Sedimentology. Advances in Earth Sciences,26(6):586-597]
[4] 梅冥相. 2011b. 陆源碎屑岩中微生物诱发的沉积构造的成因类型及其分类体系. 地质论评,57(3):419-436. [Mei M X. 2011b. Genetic types and their classification for the microbial induced sedimentary structure within terrigenous clastic rocks. Geological Review,57(3):419-436.]
[5] 梅冥相. 2012. 从生物矿化作用衍生出的有机矿化作用:地球生物学框架下重要的研究主题. 地质论评,58(5):937-951. [Mei M X. 2012. Organomineralization derived from the biomineralization:An important theme within the framework of geobiology. Geological Review,58(5):937-951]
[6] 梅冥相. 2014. 微生物席的特征和属性:微生物席沉积学的理论基础. 古地理学报,16(3):285-304. [Mei M X. 2014. Feature and nature of microbial-mat:Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition),16(3):285-304]
[7] 梅冥相,高金汉. 2015. 光合作用的起源:一个引人入胜的重大科学命题. 古地理学报,17(5):577-592. [Mei M X,Gao J H. 2015. The origin of photosynthesis:An enchanting and important scientific theme. Journal of Palaeogeography(Chinese Edition),17(5):577-592]
[8] 梅冥相,刘少峰. 2013. 陆生植被对河流沉积作用的影响:生物沉积作用研究的一个重要主题. 古地理学报,15(1):1-10. [Mei M X,Liu S X. 2013. Sedimentological impact of terrestrial vegetation on fluvial sedimentation:An important theme on biosedimentation studies. Journal of Palaeogeography(Chinese Edition),15(1):1-10]
[9] 梅冥相,孟庆芬. 2015. 太古宙氧气绿洲:地球早期古地理重塑的重要线索. 古地理学报,17(6):719-734. [Mei M X,Meng Q X. 2015. Archean oxygen oases:An important clue of palaogeographical reconstruction in the early Earth. Journal of Palaeogeography(Chinese Edition),17(6):719-734]
[10] 梅冥相,孟庆芬,刘智荣. 2007. 微生物形成的原生沉积构造研究进展综述. 古地理学报,9(4):353-364. [Mei M X,Meng Q F,Liu Z R. 2007. Overview of advances in studies of primary sedimentary structures formed by microbes. Journal of Palaeogeography(Chinese Edition),9(4):353-364]
[11] 谢树成,殷鸿福,史晓颖. 2011. 地球生物学:生物与地球环境的相互作用与协同演化. 北京:科学出版社. [Xie S C,Yin H F,Shi X Y. 2011. Geobiology:Interaction and Synergetic Evolution between the Earth’s Environment and the Life. Beijing:Science Press]
[12] 徐桂荣,王永标,龚淑云,袁伟. 2005. 生物与环境的协同演化. 湖北武汉:中国地质大学出版社. [Xu G R,Wang Y B,Gong S Y,Yuan W. 2005. Synergetic Evolution of Organism and Envirenment. Wuhan of Hubei Province:Press of China University of Geosciences]
[13] 殷鸿福,杨逢清,谢树成,王永标,王红梅,彭元桥. 2004. 生物地质学. 湖北武汉:中国地质大学出版社. [Ying H F,Yang F Q,Xie S C,Wang Y B,Wang H M,Peng Y Q. 2004. Biogeology. Wuhan of Hubei Province:Press of China University of Geosciences]
[14] AlbarèDear F,Blichert-Toft J. 2007. The split fate of the early Earth,Mars,Venus,and Moon. Comptes Rendus(Geoscience),339:917-927.
[15] Alibert C,McCulloch M T. 1993. Rare earth and neodymium composition of the banded iron formations and associated shales from Hamersley,Western Australia. Geochimica et Cosmochimica Acta,47:187-204.
[16] Allwood A C,Walter M R,Kamber B S,Marshall C P,Burch I W. 2006. Stromatolite reef from the Early Archaean era of Australia. Nature,441:714-718.
[17] Anbar A D,Knoll A H. 2002. Proterozoic ocean chemistry and evolution:A bioinorganic bridge?. Science,297:1137-1142.
[18] Anbar A D,Rouxel O. 2007. Metal stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences,35:717-746.
[19] Anbar A D,Duan Y,Lyons T W,Arnold G L,Kendall B,Creaser R A,Kaufman A J,Gordon G W,Scott C,Garvin J,Buick R. 2007. A whiff of oxygen before the great oxidation event?. Science,317:1903-1905.
[20] Anders E,Grevesse N. 1989. Abundances of the elements:Meteoritic and solar. Geochimica et Cosmochimica Acta,53:197-214.
[21] Aspler L B,Chiarenzelli J R. 1998. Two Neoarchean supercontinents?Evidence from the Paleoproterozoic. Sedimentary Geology,120:75-104.
[22] Awramik S M. 2006. Respect for stromatolites. Nature,441:700-701.
[23] Barrow J D,Tipler F J. 1986. The Anthropic Cosmological Principle. Oxford:Oxford University Press.
[24] Berner R A. 2006. GEOCARBSULF:A combined model for Phanerozoic atmospheric O2 and CO2. Geochimica et Cosmochimica Acta,70:5653-5664.
[25] Berner R A,Beerling D J,Dudley R,Robinson J M,Wildman RA. 2003. Phanerozoic atmospheric oxygen. Annual Review of Earth and Planetary Sciences,31:105-134.
[26] Bjerrum C J,Canfield D E. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature,417:159-162.
[27] Blank C E,S��nchez-Baracaldo P. 2010. Timing of morphological and ecological innovations in the Cyanobacteria:A key to understanding the rise in atmospheric oxygen. Geobiology,8:1-23.
[28] Blankenship R E,Sadekar S,Raymond J. 2007. The evolutionary transition from anoxygenic to oxygenic photosynthesis. In:Falkowski P G,Knoll A H. Evolution of Primary Producers in the Sea. San Diego,CA:Academic Press,21-35.
[29] Bleeker W. 2003. The late Archaean record:A puzzle in ca. 35 pieces. Lithos,71:99-134.
[30] Buick R. 2007. Did the Proterozoic‘Canfield Ocean’ cause a laughing gas greenhouse?. Geobiology,5:97-100.
[31] Buick R. 2008. When did oxygenic photosynthesis evolve?. Philosophical Transaction of the Royal Society B,363:2731-2743.
[32] Butterfield N J. 2009. Oxygen,animals and ocean ventilation:An alternate view. Geobiology,7:1-7.
[33] Campbell I H,Allen C M. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nature Geoscience, 1(8):554-558.
[34] Campbell I H,Squire R J. 2010. The mountains that triggered the Late Neoproterozoic increase in oxygen:The second great oxidation event. Geochimica et Cosmochimica Acta,74:4187-4206.
[35] Canfield D E. 2005. The early history of atmospheric oxygen:Homage to Robert M. Garrels. Annual Review of Earth and Planetary Science,33:1-36.
[36] Canfield D E,Teske A. 1996. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature,382:127-132.
[37] Canfield D D,Poulton S W,Narbonne G M. 2007. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science,315:92-95.
[38] Canil D. 1997. Vanadium partitioning and the redox state of Archaean komatiitic magmas. Nature,389:842-845.
[39] Catling D C,Claire M K. 2005. How Earth’s atmosphere evolved to an oxic state:A status report. Earth and Planetary Science Letters,237:1-20.
[40] Catling D C,Glein C R,Zahnle K J,McKay C P. 2005. Why O 2 is required by complex life on habitable planets and the concept of planetary‘oxygenation time’. Astrobiology,5:415-438.
[41] Cloud P E Jr. 1972. A working model for the primitive Earth. American Journal of Science,272:537-548.
[42] Condie K C,O’Neill C,Aster R C. 2009. Evidence and implications for a widespread magmatic shutdown for 250 My on Earth. Earth and Planetary Science Letters,282:294-298.
[43] Crowe S A,Døssing L N,Beukes N J,Bau M,Kruger S J,Frei R,Canfield D E. 2013. Atmospheric oxygenation three billion years ago. Nature, 501:535-539.
[44] Czaja A D,Johnson C M,Roden E E,Beard B L,Voegelin A R,Nägler T F,Beukes N J,Wille M. 2012. Evidence for free oxygen in the Neoarchean ocean based on coupled iron-molybdenum isotope fractionation. Geochimica et Cosmochimica Acta,86:118-137.
[45] Davies G F. 1995. Punctuated tectonic evolution of the Earth. Earth and Planetary Science Letters,36:363-380.
[46] Derry L A,France-Lanord C. 1996. Neogene growth of the sedimentary organic carbon reservoir. Paleoceanography,11:267-275.
[47] Dudley R. 1998. Atmospheric oxygen,giant Paleozoic insects and the evolution of aerial locomotor performance. Journal of Experimental Biology,201:1043-1050.
[48] Eriksson P G,Catuneanu O,Nelson D R,Rigby M J,Bandopadhyay P C,Altermann W. 2010. Events in the Precambrian history of the Earth:Challenges in discriminating their global significance. Marine and Petroleum Geology,30:1-18.
[49] Ernst W G. 2009. Archean plate tectonics,rise of Proterozoic supercontinentality and onset of regional episodic stagnant-lid behaviour. Gondwana Research,15:243-253.
[50] Erwin D H,Laflamme M,Tweedt S,Sperling E A,Pisani D,Peterson K J. 2011. The Cambrian conundrum:Early divergence and later ecologicalsuccess in the early history of animals. Science,334:1091-1097.
[51] Falkowski P G. 1997. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean. Nature,387:272-275.
[52] Falkowski P G,Godfrey L V. 2008. Electrons,life and the evolution of Earth’s oxygen cycle. Philosophical Transaction of the Royal Society(B),363:2705-2716.
[53] Falkowski P G,Isozaki Y. 2008. The Story of O 2 . Science,322:540-542.
[54] Falkowski P G,Katz M E,Milligan A J,Fennel K,Cramer B S,Aubry M-P,Berner R A,Novacek M J,Zapol W M. 2005. The rise of oxygen over the past 205,million years and the evolution of large placental mammals. Science,309:2202-2204.
[55] Farquhar J,Zerkle A,Bekker A. 2010. Geological constraints on the origin of oxygenic photosynthesis. Photosynthesis Research,89:1-26.
[56] Fike D A,Grotzinger J P,Pratt L M,Summons R E. 2006. Oxidation of the Ediacaran ocean. Nature,444:744-747.
[57] Godderis Y,Francois L M. 1996. Balancing the Cenozoic carbon and alkalinity cycles:Constraints from isotopic record. Geophysics Research Letters,23:3743-3746.
[58] Godderis Y,Veizer J. 2000. Tectonic control of chemical and isotopic composition of ancient oceans:The impact of continental growth. American Journal of Science,300:434-461.
[59] Goldblatt C,Lenton T M,Watson A J. 2006. Bistability of atmospheric oxygen and the Great Oxidation. Nature,443:683-686.
[60] Graham J B,Dudley R,Aguilar N M,Gans C. 1995. Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature,375:117-120.
[61] Grotzinger J P,Fike D A,Fischer W W. 2011. Enigmatic origin of the largest-known carbon isotope excursion in Earth’s history. Nature Geoscience,4:285-292.
[62] Guo Q,Strauss H,Kaufman A J,Schröder S,Gutzmer J,Wing B,Baker M A,Bekker A,Jin Q,Kim S-T,Farquhar J. 2009. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology,37:399-402.
[63] Halverson G P,Hurtgen M T. 2007. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters,263:32-44.
[64] Holland H D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton:Princeton University Press.
[65] Holland H D. 2006. The oxygenation of the atmosphere and oceans. Philosophical Transaction of the Royal Society B,361:903-915.
[66] Holland H D. 2009. Why the atmosphere became oxygenated:A proposal. Geochimica et Cosmochimica Acta,73:5241-5255.
[67] Hoashi M,Bevacqua D C,Otake T,Watanabe Y,Hickman A H,Utsunomiya S,Ohmoto H. 2009. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geosciences,2:301-306.
[68] Hurtgen M T,Arthur M A,Halverson G P. 2005. Neoproterozoic sulfur isotopes,the evolution of microbial sulfur species,and the burial efficiency of sulfide as sedimentary sulfide. Geology,33:41-44.
[69] Javaux E J,Knoll A H,Walter M R. 2004. TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology,2:121-132.
[70] Johnson C M,Beard B L,Roden E E. 2008a. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annual Reviews of Earth and Planetary Sciences,56:457-493.
[71] Johnson C M,Beard B L,Klein C,Beukes N J,Roden E E. 2008b. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochimica et Cosmochimica Acta,72:151-169.
[72] Johnston D T,Goldberg T,Poulton S W,Sergeev V N,Podkovyrov V,Vorob’eva N G,Bekker A,Knoll A H. 2012. Late Ediacaran redox stability and metazoan evolution. Earth and Planetary Science Letters,335-336:25-35.
[73] Kah L C,Bartley J K. 2011. Protracted oxygenation of the Proterozoic biosphere. International Geology Review,53:1424-1442.
[74] Kah L C,Lyons TW,Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature,431:834-838.
[75] Kasting J F. 1993. Earth’s early atmosphere. Science,259:920-926.
[76] Kasting J F,Catling D. 2003. Evolution of a habitable planet. Annual Review of Astronomy and Astrophysics,41:429-463.
[77] Kasting J F,Siefert J L. 2002. Life and the evolution of Earth’s atmosphere. Science,296:1066-1068.
[78] Keeling R F,Bender M L,Najjar R G,Tans P P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochemical Cycles,7:37-67.
[79] Kirschvink J L,Gaidos E J,Bertani L E,Beukes N J,Gutzmer J,Maepa L N,Steinberger R E. 2000. Paleoproterozoic snowball Earth:Extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences,97:1400-1405.
[80] Knoll A H. 1992. The early evolution of Eukaryotes: A geological perspective. Science,256:622-625.
[81] Knoll A H. 2013. Systems paleobiology. GSA Bulletin,125:3-13.
[82] Knoll A H,Carroll S B. 1999. Early animal evolution: Emerging views from comparative biology and geology. Science,284: 2129-2137.
[83] Knoll A H,Walter M R,Narbonne G M,Christie-Blick N. 2004. A new period for the geologic time scale. Science,305:621-622.
[84] Konhauser K O,Pecoits E,Lalonde S V,Papineau D,Nisbet E G,Barley M E,Arndt N T,Zahnle K,Kamber B S. 2009. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature,458:750-753.
[85] Kopp R E,Kirschvink J L,Hilburn I A,Nash C Z. 2005. The Paleoproterozoic snowball Earth:A climate disaster triggered by the evolution of oxygenic photosynthesis. Proceedings of the National Academy of Sciences,102:11131-11136.
[86] Kramers J D. 2007. Hierarchical Earth accretion and the Hadean Eon. Journal of the Geological Society,164:3-17.
[87] Kump L R. 2008. The rise of atmospheric oxygen. Nature,451:277-278.
[88] Kump L R,Barley M E. 2007. Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature,448:1033-1036.
[89] Kump L R,Seyfried W E. 2005. Hydrothermal Fe fluxes during the Precambrian:Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth and Planetary Science Letters,235:654-662.
[90] Kump L R,Junium C,Arthur M A,Brasier A,Fallick A,Melezhik V,Lepland A,C ne A E,Luo Genming. 2011. Isotopic evidence for massive oxidation of organic matter following the great oxidation event. Science,334:1694-1696.
[91] Li C,Love G D,Lyons T W,Fike D A,Sessions A L,Chu X. 2010.A stratified redox modelfor the Edia caran ocean. Science,328:80-83.
[92] Li Z X,Bogdanova S V,Collins A S,Davidson A,DeWaele B,Ernst R E,Fitzsimons C W,Fuck R A,Gladkochub D P,Jacons J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V. 2008. Assembly,configuration and break-up history of Rodinia:A synthesis. Precambrian Research,160:179-210.
[93] Lindsay J F,Brasier M D. 2002. Did global tectonics drive early biosphere evolution?Carbon isotope record from 2.6 to 1.9,Ga carbonates of Western Australian basins. Precambrian Research,114:1-34.
[94] Liu L. 2004. The inception of the oceans and CO 2 -atmosphere in the early history of the Earth. Earth and Planetary Science Letters,227:179-184.
[95] Logan G A,Hayes J M,Hieshima G B,Summons R E. 1995. Terminal Proterozoic reorganization of biogeochemical cycles. Nature,376:53-56.
[96] Matte P. 2001. The Variscan collage and orogeny(480-290,Ma)and the tectonic definition of the Armorica microplate:A review. Terra Nova,13:122-128.
[97] Melezhik V A. 2006. Multiple causes of Earth’s earliest global glaciation. Terra Nova,18:130-137.
[98] Narbonne G M,Xiao S,Shields G A. 2012. the Ediacaran Period(Chapter 18). In:Gradstein F M,Ogg J G,Schmitz M D,Ogg G M(eds). The Geologic Time Scale 2012. Amsterdam:Elsevier,413-435.
[99] Nisbet E G,Grassineau N V,Howe C J,Abell P I,Regelous M,Nisbet R E R. 2007. The age of Rubisco:The evolution of oxygenic photosynthesis. Geobiology,5:311-335.
[100] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling. Earth-Science Reviews,110:26-57.
[101] Olson J M,Blankenship R E. 2004. Thinking about the evolution of photosynthesis. Photosynthesis Research,80:373-386.
[102] Olson S L,Kump L R,Kasting J F. 2013. Quantifying the areal extent and dissolvedoxygen concentrations of Archean oxygen oases. Chemistry Geology,362:35-43.
[103] O’Neil J,Maurice C,Stevenson R K,Larocque J,Cloquet C,David J,Francis D.2007. The geology of the 3.8,Ga Nuvvuagittuq(Porpoise Cove)greenstone belt,northeastern Superior Province,Canada. In:Van Kranendonk M J,Smithies R H,Bennet V. Earth’s Oldest Rocks(Developments in Precambrian Geology,15). Amsterdam:Elsevier,219-250.
[104] Ono S,Beukes N J,Rumble D,Fogel M L. 2006. Early evolution of atmospheric oxygen from multiple-sulfur and carbon isotope records of the 2.9,Ga Mozaan Group of the Pongola Supergroup,Southern Africa. South African Journal of Geology,107:97-108.
[105] Parnell J,Boyce A J,Mark D,Bowden S,Spinks S. 2010. Early oxygenation of the terrestrial environment during the Mesoproterozoic. Nature,468:290-293.
[106] Pavlov A A,Kasting J F. 2002. Mass-independent fractionation of sulfur isotopes in Archean sediments:Strong evidence for an anoxic Archean atmosphere. Astrobiology,2:27-41.
[107] Payne J L,McClain C R,Boyer A G,Brown J H,Finnegan S,Kowalewski M,Krause Jr R A,Lyons S K,McShea D W,Novack-Gottshall P M,Smith F A,Spaeth P,Stempien J A,Wang S C. 2011. The evolutionary consequences of oxygenic photosynthesis:A body size perspective. Photosynthesis Research,107:37-57.
[108] Pehrsson S J,Jefferson C. 2009. Riding the supercontinent cycle:Paleoproterozoic basins and their metal endowment,american geophysical union. Geological Association of Canada and Mineralogical Association of Canada Joint Assembly,Toronto,Canada:U74A-U701.
[109] Pirajno F,Hocking R M,Reddy S M,Jones A J. 2009. A review of the geology and geodynamic evolution of the Palaeoproterozoic Earaheedy Basin,Western Australia. Earth-Science Reviews,94:39-77.
[110] Planavsky N,Rouxel O,Bekker A,Shapiro R,Fralick P,Knudsen A. 2009. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth and Planetary Science Letters,286:230-242.
[111] Poulton S W,Frallick P W,Canfield D E. 2004. The transition to a sulphidic ocean~1.84 billion years ago. Nature,431:179-178.
[112] Poulton S W,Fralick P W,Canfield D E. 2010. Spatial variability in oceanic redox structure 1.8 billion years ago. Nature Geoscience,3:486-490.
[113] Reddy S M,Evans D A D. 2009. Paleoproterozoic supercontinents and global evolution:Correlations from core to atmosphere. In:Reddy S M,Mazumder R,Evans D A D,Collins A S. Paleoproterozoic Supercontinents and Global Evolution. Geological Society Special Publication,323:1-23.
[114] Riding R,Fralick P,Liang Liyuan. 2014. Identification of an Archean marine oxygen oasis. Precambrian Research,251:232-237.
[115] Rogers J J W,Santosh M. 2002. Configuration of Columbia,a Mesoproterozoic supercontinent. Gondwana Research,5:5-22.
[116] Rogers J J W,Santosh M. 2003. Supercontinent in earth history. Gondwana Research,6:357-368.
[117] Rouxel O J,Bekker A,Edwards K J. 2005. Iron isotope constraints on the Archean and Paleoproterozoic ocean redox state. Science,207:1088-1091.
[118] Schopf J W. 2011. The paleobiological record of photosynthesis. Photosynthesis Research,107,87-101.
[119] Scott A C,Glasspool I J. 2006. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences,103:10861-10865.
[120] Scott A C,Lyons T W,Bekker A,Shen Y,Poulton S W,Chu X,Anbar A D. 2008. Tracing the stepwise oxygenation of the Proterozoic ocean. Nature,452:456-459.
[121] Sessions A L,Doughty D M,Welander P V,Summons R E,Newman D K. 2009. The continuing puzzle of the Great Oxidation Event. Current Biology,19:567-574.
[122] Shields-Zhou G,Och L. 2011. The case for a Neoproterozoic oxygenation event:Geochemical evidence and biological consequences. GSA Today,21:4-11.
[123] Sperlinga E A,Frieder C A,Raman A V,Girguis P R,Levin L A,Knoll A H. 2013. Oxygen,ecology,and the Cambrian radiation of animals. Proceedings of the National Academy of Sciences,110:13446-13451.
[124] Squire R J,Campbell I H,Allen C M,Wilson C J L. 2006. Did the Transgondwanan supermountain trigger the explosive radiation of animals on Earth?. Earth and Planetary Science Letters,250:116-134.
[125] Tzipermana E,Halevyb I,Johnstona D T,Knoll A H,Schraga D P. 2011. Biologically induced initiation of Neoproterozoic snowball-Earth events. Proceedings of the National Academy of Sciences,108:15091-15096.
[126] Van Kranendonk M J,Altermann W,Beard B L,Hoffman P F,Johnson C M,Kasting J F,Melezhik V A,Nutman A P,Papineau D,Pirajno F. 2012. A chronostratigraphic division of the Precambrian. In:Gradstein F M,Ogg J G.,Schmitz M D,Ogg G M. The Geologic Time Scale 2012. Amsterdam:Elsevier,299-392.
[127] Von Brunn V,Gold D JC. 1993. Diamictite in the Archaean Pongola Sequence of southern Africa. Journal of African Earth Sciences,16:367-374.
[128] Wille M,Kramers J D,Nägler T F,Beukes N J,Schröder S,Meisel T,Lacassie J P,Voegelin A R. 2007. Evidence for a gradual rise of oxygen between 2.6 and 2.5,Ga from Mo isotopes and Re-PGE signatures in shales. Geochimica et Cosmochimica Acta,71:2417-2435.
[129] Young G M. 2002. Stratigraphic and tectonic settings of Proterozoic glaciogenic rocks and banded iron-formations:Relevance to the snowball Earth debate. Journal of African Earth Sciences,35:451-466.
[130] Young G M,von Brunn V,Gold D J C,Minter W E L. 1998. Earth’s oldest reported glaciation:Physical and chemical evidence from the Archean Mozaan Group(~2.9,Ga)of South Africa. Journal of Geology,106:523-538.
[131] Zahnle K J,Claire M W,Catling D C. 2006. The loss of mass-independent fractionation of sulfur due to a Paleoproterozoic collapse of atmospheric methane. Geobiology,4:271-283.
[132] Zhao G,Wilde S A,Sun M,Li S,Li X,Zhang J. 2008. SHRIMP U-Pb zircon ages of granitoid rocks in the Lülian Complex:Implications for the accretion and evolution of the Trans-North China Orogen. Precambrian Research,160:213-226. |