Effects of palaeogeographic environment on volcano eruption style: Example from the Lower Permian Fengcheng Formation in eastern Mahu sag,Junggar Basin
He Yan-Xin1, Xian Ben-Zhong1, 2, Niu Hua-Peng1, 2, Liu Jian-Ping1
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249; 2 State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum(Beijing),Beijing 102249;
Abstract The eruption style transition of modern volcanoes often occurred,due to the changes of magma or ambient environment in nature. This paper tries to explore the probable influences of palaeogeographic environment on volcano eruption style in the sedimentary basin. Based on data from seismic,drilling,logging and core,the palaeogeographic environment and distribution of volcanic rocks in the Lower Permian Fengcheng Formation in eastern Mahu sag,Junggar Basin,were analyzed. The petrological and geochemical characteristics of cored volcanic rocks were studied by core observation,thin section observation,SEM(scanning electron microscope),major element analysis and EPMA(electron probe microanalysis). The results showed that:(1)There are mainly four types of volcanic rock and three types of lithological association. Two kinds of eruption style,phreatomagmatic eruption and magmatic eruption,are recognized. (2)In detail,phreatomagmatic eruption is characterized by peperite,accretionary lapilli and welded tuff developed with bread-crusted texture,welded texture and welded perlitic texture. While,magmatic eruption is characterized by accretionary lapilli-bearing lava caused by the cementation of earlier accretionary lapilli. (3)The evolution of palaeogeographic environment near vent controlled the eruption style,which then influenced the characteristics of eruptive products. Phreatomagmatic eruption caused by magma and enough water interaction occurred when palaeogeographic environment was subaqueous. Effusive magmatic eruption happened when palaeogeographic environment was subaerial. The major reason of palaeogeographic environment changes probably were related to the accumulation of eruptive products near vent or lake level changes caused by seasonal weather change in the core intervals. (4)Therefore palaeogeographic environment had significant influences on eruption style,eruptive process and features of eruptive products. That could provide a new viewpoint for genetic analysis of volcanic rocks and eruptive process rebuilding,and also provide a new idea for exploration and development of volcanic petroleum reservoirs.
Fund:[Co-funded by the National Natural Science Foundation of China(Nos.41172104,41372117,41272133),the National Science and Technology Major Project(Nos. 2011ZX05009-002,2011ZX05014-001)and the Foundation of China University of Petroleum(Beijing)(No. KYJJ2012-01-06)]
Corresponding Authors:
Xian Ben-Zhong,born in 1973,is an associate professor of China University of Petroleum(Beijing). He is mainly engaged in researches on volcanic reservoir and gravity flow. E-mail: xianbzh@cup.edu.cn.
About author: He Yan-Xin,born in 1993,is a master candidate of China University of Petroleum(Beijing). He is mainly engaged in research on volcanic reservoir. E-mail: Heyx1993@126.com.About the corresponding author Xian Ben-Zhong,born in 1973,is an associate professor of China University of Petroleum(Beijing). He is mainly engaged in researches on volcanic reservoir and gravity flow. E-mail: xianbzh@cup.edu.cn.
Cite this article:
He Yan-Xin,Xian Ben-Zhong,Niu Hua-Peng et al. Effects of palaeogeographic environment on volcano eruption style: Example from the Lower Permian Fengcheng Formation in eastern Mahu sag,Junggar Basin[J]. JOPC, 2018, 20(2): 245-262.
He Yan-Xin,Xian Ben-Zhong,Niu Hua-Peng et al. Effects of palaeogeographic environment on volcano eruption style: Example from the Lower Permian Fengcheng Formation in eastern Mahu sag,Junggar Basin[J]. JOPC, 2018, 20(2): 245-262.
[1] 蔡忠贤,陈发景,贾振远. 2000. 准噶尔盆地的类型和构造演化. 地学前缘, 7(4): 431-440. [Cai Z X,Chen F J,Jia Z Y. 2000. Types and tectonic evolution of Junger Basin. Earth Science Frontiers, 7(4): 431-440] [2] 曹剑,雷德文,李玉文,唐勇,阿布力米提,常秋生,王婷婷. 2015. 古老碱湖优质烃源岩: 准噶尔盆地下二叠统风城组. 石油学报, 36(7): 781-790. [Cao J,Lei D W,Li Y W,Tang Y,Aiskaer Abulimiti,Chang Q S,Wang T T. 2015. Ancient high-quality alkaline lacustrine source rocks discovered in the Lower Permian Fengcheng Formation,Junggar Basin. Acta Petrolei Sinica, 36(7): 781-790] [3] 陈建平,查明. 2002. 准噶尔盆地环玛湖凹陷二叠系不整合特征及其在油气运移中的意义. 石油勘探与开发, 29(4): 29-31. [Chen J P,Zha M. 2002. Permian unconformity and its effect on petroleum migration in the circum-Mahu depression of Junggar Basin. Petroleum Exploration and Development, 29(4): 29-31] [4] 邓林燕. 2012. 沙洲铀矿床绿泥石化特征及形成环境研究. 东华理工大学硕士研究论文. [Deng L Y. 2012. Characteristics and Formation Environment of Chloritization in Shazhou Uranium Deposit. Master's Thesis of East China Insititute of Technology] [5] 樊祺诚,孙谦,龙安明,尹克坚,隋建立,李霓,王团华. 2006. 北部湾涠洲岛及斜阳岛火山地质与喷发历史研究. 岩石学报, 22(6): 1529-1537. [Fan Q C,Sun Q,Long A M,Yin K J,Sui J L,Li N,Wang T H. 2006. Geology and eruption history of volcanoes in Weizhou Island and Xieyang Island,Northern Bay. Acta Petrologica Sinica, 22(6): 1529-1537] [6] 高睿,肖龙,王国灿,贺新星,杨刚,鄢圣武. 2013. 西准噶尔晚古生代岩浆活动和构造背景. 岩石学报, 29(10): 3413-3434. [Gao R,Xiao L,Wang G C,He X X,Yang G,Yan S W. 2013. Paleozoic magmatism and tectonic setting in West Junggar. Acta Petrologica Sinica, 29(10): 3413-3434] [7] 龚一鸣,纵瑞文. 2015. 西准噶尔古生代地层区划及古地理演化. 地球科学(中国地质大学学报), 40(3): 461-484. [Gong Y M,Zong R W. 2015. Paleozoic stratigraphic regionalization and Paleogeograpghic evolution in Western Junggar,Northern China. Earth Science:Journal of China University of Geosciences, 40(3): 461-484] [8] 郭召杰,朱贝,陈石. 2015. 熔积岩及其对中国几处关键构造事件的限定. 地学前缘, 22(2): 174-186. [Guo Z J,Zhu B,Chen S. 2015. Peperite: Constrains to a few key tectonic events in China. Earth Science Frontiers, 22(2): 174-186] [9] 何衍鑫,鲜本忠,牛花朋,张鑫璐,沈佳男. 2017. 基于氧化系数的火山喷发环境判别: 以准噶尔盆地西北缘下二叠统为例. 高校地质学报, 23(4): 1-13. [He Y X,Xian B Z,Niu H P,Zhang X L,Shen J N. 2017. Discrimination of volcanic eruption environment using oxidation index: A case study of Lower Permian volcanic rocks in northwestern margin of Junggar Basin. Geological Journal of China Universities, 23(4): 1-13] [10] 李建忠,吴晓智,齐雪峰,郑曼,张庆春. 2010. 新疆北部地区上古生界火山岩分布及其构造环境. 岩石学报, 26(1): 195-206. [Li J Z,Wu X Z,Qi X F,Zheng M,Zhang Q C. 2010. Distribution and tectonic setting of Upper Paleozoic volcanic rock in northern Xinjiang. Acta Pertologica Sinica, 26(1): 195-206] [11] 刘招君,苗巧银,刘祥,柳蓉. 2008. 基浪堆积物(岩)地质特征及其地质意义. 石油与天然气地质, 29(1): 11-18. [Liu Z J,Miao Q Y,Liu X,Liu R. 2008. Geological features and significance of base surge deposits. Oil & Gas Geology, 29(1): 11-18] [12] 毛翔,李江海,张华添,王洛. 2012. 准噶尔盆地及其周缘地区晚古生代火山机构分布与发育环境分析. 岩石学报, 28(8): 2381-2391. [Mao X,Li J H,Zhang H T,Wang L. 2012. Study on the distribution and developmental environment of the Late Paleozoic volcanoes in Junggar Basin and its adjacent areas. Acta Petrologica Sinica, 28(8): 2381-2391] [13] 孟家峰,郭召杰,方世虎. 2009. 准噶尔盆地西北缘冲断构造新解. 地学前缘, 16(3): 171-180. [Meng J F,Guo Z J,Fang S H. 2009. A new insight into the thrust structures at the northwestern margin of Junggar Basin. Earth Science Frontiers, 16(3): 171-180] [14] 彭飚,金振奎,朱小二,崔学敏,杨天博,石良. 2017. 扇三角洲沉积模式探讨: 以准噶尔盆地玛北地区下三叠统百口泉组为例. 古地理学报, 19(2): 315-326. [Peng B,Jin Z K,Zhu X E,Cui X M,Yang T B,Shi L. 2017. Discussion about depositional models of fan delta: A case study from the Lower Triassic Baikouquan Formation in Mabei area,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 19(2): 315-326] [15] 秦志军,陈丽华,李玉文,王婷婷,曹剑. 2016. 准噶尔盆地玛湖凹陷下二叠统风城组碱湖古沉积背景. 新疆石油地质, 37(1): 1-6. [Qin Z J,Chen L H,Li Y W,Wang T T,Cao J. 2016. Paleo-sedimentary setting of the Lower Permian Fengcheng alkali lake in Mahu Sag,Junggar Basin. Xinjiang Petroleum Geology, 37(1): 1-6] [16] 邵雨,张顺存,史基安,支东明,孙国强. 2012. 准噶尔盆地腹部早二叠纪—晚石炭纪火山岩的构造背景分析. 地质科学, 47(4): 1005-1015. [Shao Y,Zhang S C,Shi J A,Zhi D M,Sun G Q. 2012. Tectonic settings of the Late Carboniferous-Early Permian volcanic rocks,central Junggar Basin. Chinese Journal of Geology, 47(4): 1005-1015] [17] 隋风贵. 2015. 准噶尔盆地西北缘构造演化及其与油气成藏的关系. 地质学报, 89(4): 779-793. [Sui F G. 2015. Tectonic evolution and its relationship with hydrocarbon accumulation in the Northwest Margin of Junggar Bsain. Acta Geologica Sinica, 89(4): 779-793] [18] 孙谦. 2003. 琼北第四纪火山活动与岩浆演化. 中国地震局地质研究所博士毕业论文. [Sun Q. 2003. Quaternary Volcanic Activity and Magma Evolution in North Hainan Island. Doctoral Dissertation of Institute of Geology,China Earthquake Administration] [19] 孙谦,樊祺诚. 2005a. 火山射气岩浆喷发作用研究进展. 岩石学报, 21(6): 1709-1718. [Sun Q,Fan Q C. 2005. Study progress on volcanic phreatomagmatic eruption. Acta Petrologica Sinica, 21(6): 1709-1718] [20] 孙谦,樊祺诚. 2005b. 琼北射气岩浆喷发力学机制探讨. 地震地质, 27(1): 63-72. [Sun Q,Fan Q C. 2005. Dynamic mechanism of phreatomagmatic eruption in Northern Hainan Island. Seismology and geology, 27(1): 63-72] [21] 王璞珺,缴洋洋,杨凯凯,张增宝,边伟华. 2016. 准噶尔盆地火山岩分类研究与应用. 吉林大学学报(地球科学版), 46(4): 1056-1070. [Wang P J,Jiao Y Y,Yang K K,Zhang Z B,Bian W H. 2016. Classification of volcanogenetic successions and its application to the volcanic reservoir exploration in the Junggar Basin,NW China. Journal of Jilin University(Earth Science Edition), 46(4): 1056-1070] [22] 吴晓智,齐雪峰,唐勇,李伯华. 2009. 东西准噶尔火山岩成因类型与油气勘探方向. 中国石油勘探,(1): 9-17. [Wu X Z,Qi X F,Tang Y,Li B H. 2009. Genetic types and hydrocarbon exploration directions of volcanic rocks in eastern and western Junggar. China Petroleum Exploration,(1): 9-17] [23] 鲜本忠,牛花朋,董国栋,朱世发,安思奇. 2013. 准噶尔盆地西北缘下二叠统火山岩岩性、岩相及其与储集层的关系. 高校地质学报, 19(1): 46-55. [Xian B Z,Niu H P,Dong G D,Zhu S F,An S Q. 2013. Early Permian volcanic lithology,lithofacies and their relations to reservoir in northwestern margin of the Junggar basin. Geological Journal of China Universities, 19(1): 46-55] [24] 于红梅. 2012. 火山喷发物的显微构造研究及其地质意义. 中国地震局地质研究所硕士毕业论文. [Yu H M. 2012. Microstructural Study on Volcanic Products and Its Geological Implications. Master's Thesis of Institute of Geology,China Earthquake Administration] [25] 于红梅,许建东,林传勇,赵波. 2008. 吉林省龙岗火山群南龙湾第四纪火山碎屑颗粒特征研究. 岩石学报, 24(11): 2621-2630. [Yu H M,Xu J D,Lin C Y,Zhao B. 2008. Study on th characteristics of Quaternary volcanic pyroclasys from Nanlongwan valcano,Longgang volcanic cluster,Jilin Province. Acta Petrologica Sinica, 24(11): 2621-2630] [26] 余宽宏,操应长,邱隆伟,孙沛沛,杨勇强,曲长胜,万敏. 2016. 准噶尔盆地玛湖凹陷下二叠统风城组含碱层段韵律特征及成因. 古地理学报, 18(6): 1012-1029. [Yu K H,Cao Y C,Qiu L W,Sun P P,Yang Y Q,Qu C S,Wan M. 2016. Characteristics of alkaline layer cycles and origin of the Lower Permian Fengcheng Formation in Mahu sag,Junggar Basin. Journal of Palaeogeography(Chinese Edition), 18(6): 1012-1029] [27] 张展适,华仁民,季峻峰,张彦春,郭国林,尹征平. 2007.201和361铀矿床中绿泥石的特征及其形成环境研究. 矿物学报, 27(2): 161-172. [Zhang Z S,Hua R M,Ji J F,Zhang Y C,Guo G L,Yin Z P. 2007. Characteristics and formation conditions of chlorite in no. 201 and no. 361 uranium deposits. Acta Mineralogica Sinica, 27(2): 161-172] [28] 朱世发,朱筱敏,刘继山,姚远,鲜本忠,牛花朋,赵长永. 2012. 富孔熔结凝灰岩成因及油气意义: 以准噶尔盆地乌—夏地区风城组为例. 石油勘探与开发, 39(2): 162-171. [Zhu S F,Zhu X M,Liu J S,Yao Y,Xian B Z,Niu H P,Zhao C Y. 2012. Genesis and hydrocarbon significance of vesicular ignimbrite: A case study from Fengcheng Formation,Wu-Xia area,Junggar Basin,NW China. Petroleum Exploration and Development, 39(2): 162-171] [29] 祝彦贺,王英民,袁书坤,邢向荣. 2008. 准噶尔盆地西北缘沉积特征及油气成藏规律: 以五、八区佳木河组为例. 石油勘探与开发, 35(5): 576-580. [Zhu H Y,Wang Y M,Yuan S K,Xing X N. 2008. Sedimentary characteristics and hydrocarbon accumulation rules in northwestern Junggar Basin: A case from Jiamuhe Formation of No.5 and 8 area. Petroleum Exploration and Development, 35(5): 576-580] [30] 邹志文,李辉,徐洋,余朝丰,孟祥超. 2015. 准噶尔盆地玛湖凹陷下三叠统百口泉组扇三角洲沉积特征. 地质科技情报, 34(2): 20-26. [Zou Z W,Li H,Xu Y,Yu C F,Meng X C. 2015. Sedimentary characteristics of the Baikouquan formation,lower Triassic in the Mahu Depression,Junggar Basin. Geological Science and Technology Information, 34(2): 20-26] [31] Alvarado G E,Schmincke H. 2013. The 1723 AD violent strombolian and phreatomagmatic eruption at Irazú Volcano,Costa Rica. Revista Geológica de América Central, 48: 41-61. [32] Brenna M,Gee M A M. 2014. Dyke-diatreme transition in monogenetic volcanoes: Insights from the Hillier Bay volcanic complex,Western Australia. Bulletin of Volcanology, 76(853): 1-13. [33] Chen S,Guo Z,Qi J,Zhang Y,Pe-Piper G,Piper D J W. 2016. Early Permian volcano-sedimentary successions,Beishan,NW China: Peperites demonstrate an evolving rift basin. Journal of Volcanology and Geothermal Research, 309: 31-44. [34] De Rita D,Giordano G,Esposito A,Fabbri M,Rodani S. 2002. Large volume phreatomagmatic ignimbrites from the Colli Albani Volcano(Middle Pleistocene,Italy). Journal of Volcanology and Geothermal Research, 118(1-2): 77-98. [35] Eaton A R V,Wilson C J N. 2013. The nature,origins and distribution of ash aggregates in a large-scale wet eruption deposit: Oruanui,New Zealand. Journal of Volcanology and Geothermal Research, 250: 129-154. [36] Fisher R V,Schmincke H,Wagoner Bogaard P. 1983. Origin and emplacement of a pyroclastic flow and surge unit at Laacher See,Germany. Journal of Volcanology and Geothermal Research, 17(1-4): 375-392. [37] Geshi N,Nemeth K,Noguchi R,Oikawa T. 2016. Shift from magmatic to phreatomagmatic explosion controlled by the evolution of lateral fissure eruption in Suoana Crater,Miyakejima. EGU General Assembly Conference. [38] Ghose N C,Chatterjee N,Windley B F. 2016. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism,India: Evidence from volcaniclastic rocks,bentonite,black shales,and oolite. Geoscience Frontiers, 8(4): 1-14. [39] Gilbert J S,Lane S J. 1994. The origin of accretionary lapilli. Bulletin of Volcanology, 56(5): 398-411. [40] Heiken G,Wohletz K. 1985. Volcanic Ash. University Presses of California,Chicago,Harvard & MIT. [41] Hooten J A,Ort M H. 2002. Peperite as a record of early-stage phreatomagmatic fragmentation processes: An example from the Hopi Buttes volcanic field,Navajo Nation,Arizona,USA. Journal of Volcanology and Geothermal Research, 114(1-2): 95-106. [42] Kereszturi G,Nemeth K,Cronin S J,Procter J,Agustin-Flores J. 2014. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field,New Zealand. Journal of Volcanology and Geothermal Research, 286: 101-115. [43] Lorenz V. 1973. On the formation of maars. Bulletin of Volcanology, 37(2): 183-204. [44] Lorenz V. 1974. Vesiculated tuffs and associated features. Sedimentology, 21(2): 273-291. [45] Mueller S B,Kueppers U,Ayris P M,Jacob M,Dingwell D B. 2016. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding. Earth and Planetary Science Letters, 433: 232-240. [46] Owen J,Tuffen H,Mcgarvie D W. 2013. Pre-eruptive volatile content,degassing paths and depressurisation explaining the transition in style at the subglacial rhyolitic eruption of Dalakvisl,South Iceland. Journal of Volcanology and Geothermal Research, 258: 143-162. [47] Pensa A,Cas R,Giordano G,Porreca M,Wallenstein N. 2015. Transition from steady to unsteady Plinian eruption column: The VEI 5,4.6ka Fogo A Plinian eruption,Sao Miguel,Azores. Journal of Volcanology and Geothermal Research, 305(6): 1-18. [48] Schumacher R,Schmincke H. 1995. Models for the origin of accretionary lapilli. Bulletin of Volcanology, 56(8): 626-639. [49] Seghedi Ⅰ. 2011. Permian rhyolitic volcanism,changing from subaqueous to subaerial in post-Variscan intra-continental Sirinia Basin(SW Romania-Eastern Europe). Journal of Volcanology and Geothermal Research, 201(1-4): 312-324. [50] Self S,Sparks R S. 1978. Characteristics of widespread pyroclastic deposits formed by the interaction of silicic magma and water. Bulletin of Volcanology, 41(3): 196-212. [51] Simpson K,Mcphie J. 2001. Fluidal-clast breccia generated by submarine fire fountaining,Trooper Creek Formation,Queensland,Australia. Journal of Volcanology and Geothermal Research, 109(4): 339-355. [52] Skilling I P,White J D L,Mcphie J. 2002. Peperite: A review of magma-sediment mingling. Journal of Volcanology and Geothermal Research, 114(1-2): 1-17. [53] Tanaka R,Hashimoto T. 2013. Transition in eruption style during the 2011 eruption of Shinmoe-dake,in the Kirishima volcanic group: Implications from a steady conduit flow model. Earth Planets and Space, 65(6): 645-655. [54] Tarff R W,Day S J. 2013. Chilled margin fragmentation as a trigger for transition from Strombolian to phreatomagmatic explosive activity at Cova de Paul Crater,Santo Antao,Cape Verde Islands. Bulletin of Volcanology, 75(735): 1-14. [55] van Straaten B I,Kopylova M G. 2013. Pyroclastic kimberlite deposits from the Victor Northwest pipe(Ontario,Canada): the transition from phreatomagmatic to magmatic explosivity. Candian Journal of Earth Sciences, 50(10): 1059-1068. [56] Weinstein Y. 2007. A transition from strombolian to phreatomagmatic activity induced by a lava flow damming water in a valley. Journal of Volcanology and Geothermal Research, 159(1-3): 267-284. [57] White J D L,Riggs N R. 2001. Introduction: Styles and significance of lacustrine volcaniclastic sedimentation. Spec. Publs int. Ass. Sediment, 30: 1-6. [58] Wohletz K H. 1986. Explosive magma-water interactions: Thermodynamics,explosion mechanisms,and field studies. Bulletin of Volcanology, 48(5): 245-264. [59] Wohletz K,Zimanowski B,Büttner R. 2013. Magma-water interactions. In: Sarah F,Tracy G,Rosaly L(eds). Modeling Volcanic Processes: The Physics and Mathematics of Volcanism. Cambridge University Press,230-257. [60] Zimanowski B,B Ttner R,Lorenz V,H Fele H G. 1997. Fragmentation of basaltic melt in the course of explosive volcanism. Journal of Geophysical Research: Solid Earth,102(B1): 803-814.