Abstract As the main type of microbial carbonates,it has become the consensus that stromatolites are mainly constructed by microbial mats. The stromatolitic bioherm of the Second Member of the Tieling Formation in Jixian section,Tianjin,are made of fine-grained stromatolites, interpreted as a microbial structure formed by trapping carbonate muds on microbial mats; they are different from the modern stromatolites and most of the Phanerozoic stromatolites. Particularly, the glauconite and pyrite preserved in the stromatolites represent two types of special mineralization. As a result of sulfate-reducing bacteria,pyrite commonly produced in the study area,is a window to understand the ancient microorganisms. Glauconite that is developed in the high-energy shallow sea is different from the modern glauconite in the production environment; it may not be used as the indicator mineral of the slow depositional rate,nor has the geological significance of sedimentary discontinuity. The two types of mineralization directly suggest that the Tieling stromatolites are formed by precipitation,rather than the capture of carbonate muds. This study provides some useful clues for understanding the characteristics and formation of the Mesoproterozoic stromatolites.
Fund:Financially supported by the National Natural Science Foundation of China(Nos. 41472090,40472065)
Cite this article:
Mei Chao-Jia. Glauconitization and pyritization of stromatolites:A case of the Mesoproterozoic Tieling Formation at Jixian section, Tianjin, North China[J]. JOPC, 2018, 20(3): 453-464.
Mei Chao-Jia. Glauconitization and pyritization of stromatolites:A case of the Mesoproterozoic Tieling Formation at Jixian section, Tianjin, North China[J]. JOPC, 2018, 20(3): 453-464.
[1] 曹瑞骥,梁玉左. 1974. 从藻化石和叠层石论中国震旦系划分和对比. 中国科学院南京地质古生物研究所集刊,(5): 1-26. [Cao R J,Liang Y Z.1974. On the classification and correlation of the Sinian System in China,based on a study of algae and stromatolites. Memoir of Nanjing Institute of Geology and Palaeontology,Chinese Academy of Sciences,(5): 1-26] [2] 曹瑞骥,袁训来. 2003. 中国叠层石研究的历史和现状. 微体古生物学报, 20(1): 5-14. [Cao R J,Yuan X L.2003. Brief history and current status of stromatolite study in China. Acta Micropalaeontologica Sinica, 20(1): 5-14] [3] 常华进,储雪蕾. 2011. 草莓状黄铁矿与古海洋环境恢复. 地球科学进展, 26(5): 475-481. [Chang H J,Chu X L.2011. Pyrite framboids and palaeo-ocean redox condition reconstruction. Advances in Earth Science, 26(5): 475-481] [4] 陈丽蓉. 1994. 早期成岩过程中自生海绿石的演变史. 科学通报, 39(9): 829. [Chen L R.1994. Evolutionary history of spontaneous glaucony during early diagenesis. Chinese Science Bulletin, 39(9): 829] [5] 陈淑慧,李云,胡作维,李小平,马永坤,朱平,陈安清. 2014. 海绿石的成因、指相作用及其年龄意义. 岩石矿物学杂志, 33(5): 971-979. [Chen S H,Li Y,Hu Z W,Li X P,Ma Y K,Zhu P,Chen A Q.2014. Genesis,diagnostic role and age significance of glauconites. Acta Petrologica et Mineralogica, 33(5): 971-979] [6] 高林志,张传恒,史晓颖,周洪瑞,王自强. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报, 26(3): 249-255. [Gao L Z,Zhang C H,Shi X Y,Zhou H R,Wang Z Q.2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China, 26(3): 249-255] [7] 高林志,章雨旭,王成述,田树刚,彭阳,刘友元,董大中,何怀香,雷宝桐,陈孟莪,杨立公. 1996. 天津蓟县中新元古代层序地层初探. 地质通报,(1): 64-74. [Gao L Z,Zhang Y X,Wang C S,Tian S G,Peng Y,Liu Y Y,Dong D Z,He H X,Lei B T,Chen M E,Yang L G.1996. Preliminary study on Mesozoic and Neoproterozoic sequence stratigraphy in Jixian County,Tianjin. Geological Bulletin of China,(1): 64-74] [8] 高振西,熊永先,高平. 1934. Preliminary notes on Sinian stratigraphy of North China. 地质学报,267-318. [Gao Z X,Xiong Y X,Gao P.1934. Preliminary notes on Sinian stratigraphy of North China. Acta Geologica Sinica,267-318] [9] 葛铭,孟祥化,陈荣坤, Maurice Tucker.1995. 海绿石质凝缩层: 克拉通盆地层序地层划分对比的关键: 华北寒武系凝缩层的特征和含义. 沉积学报,13(4): 1-15. [Ge M,Meng X H,Chen R K, Tucker M E.1995. Glauconitic condensed sections(CS): The key to correlation of sequence stratigraphy in the Craton Basin: Characteristics and implication of the Cambrian condensed section of North China. Acta Sedimentologica Sinica,13(4): 1-15] [10] 黄杏珍. 1982. 中国现代海绿石的特征和沉积环境及其与古代海绿石的比较. 中国科学: 化学, 12(11): 1027-1040. [Huang X Z.1982. Characteristics of modern glauconite and its sedimentary environment in China and comparison with ancient. Scientia Sinica: Chemistry, 12(11): 1027-1040] [11] 霍勇,罗顺社,张建坤,庞秋维,金姗姗,尚飞. 2012. 燕山地区宣龙坳陷中元古界洪水庄组—铁岭组沉积相分析与层序格架的建立. 地质科技情报, 31(3): 11-18. [Huo Y,Luo S S,Zhang J K,Pang Q W,Jin S S,Shang F.2012. Sedimentary facies and sequence stratigraphic framework of Hongshuizhuang-Tieling Formations in Xuanlong Depression of Yanshan Region. Geological Science and Technology Information, 31(3): 11-18] [12] 李怀坤,苏文博,周红英,相振群,田辉,杨立公,Warren D H,Frank R E.2014. 中—新元古界标准剖面蓟县系首获高精度年龄制约: 蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012. [Li H K,Su W B,Zhou H Y,Xiang Z Q,Tian H,Yang L G,Warren D H,Frank R E.2014. The first precise age constraints on the Jixian System of the Meso- to Neoproterozoic standard section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section,North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012] [13] 李明荣,王松山. 1996. 京津地区铁岭组、景儿峪组海绿石 40Ar-39Ar 年龄. 岩石学报,(3): 416-423. [Li M R,Wang S S.1996. The ages of glauconites from Tieling and Jing’eryu Formations,Beijing-Tianjin area. Acta Petrologica Sinica,(3): 416-423] [14] 梅冥相,周洪瑞,杜本明,罗志清. 2000. 天津蓟县中新元古代沉积层序的初步研究: 前寒武纪(1800~600Ma)一级层序划分及其与显生宙的一致性. 沉积与特提斯地质, 20(4): 47-65. [Mei M X,Zhou H R,Du B M,Luo Z Q.2000. Meso- and Neoproterozoic sedimentary sequences in Jixian,Tianjin,northern China: Division of the first-order sequences of the Cambrian strata(1800—600Ma)and their correlation with the Phanerozoic strata. Sedimentary Geology and Tethyan Geology, 20(4): 47-65] [15] 梅冥相,杨锋杰,高金汉,孟庆芬. 2008. 中元古代晚期浅海高能沉积环境中的海绿石: 以天津蓟县剖面铁岭组为例. 地学前缘, 15(4): 146-158. [Mei M X,Yang F J,Gao J H,Meng Q F.2008. Glauconites formed in the high-energy shallow-marine environment of the late Mesoproterozoic: A case study from Tieling Formation at Jixian section in Tianjin, North China. Earth Science Frontiers, 15(4): 146-158] [16] 梅冥相,郭荣涛,胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473-2486. [Mei M X,Guo R T,Hu Y.2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473-2486] [17] 梅冥相,刘丽,胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440-460. [Mei M X,Liu L,Hu Y.2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian Section in the western suburb of Beijing,North China. Acta Geologica Sinica, 89(2): 440-460] [18] 梅冥相,孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18(2): 127-146. [Mei M X,Meng Q F.2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography(Chinese Edition), 18(2): 127-146] [19] 孟晓庆. 2006. 天津蓟县剖面中元古界铁岭组叠层石岩礁中海绿石的产出特征及地质意义. 西北地质, 39(3): 112-116. [Meng X Q.2006. Geological characteristics and significance of glauconites in stromatolite rock-reef of Mesoproterozoic Tieling Formation in Jixian County. Northwestern Geology, 39(3): 112-116] [20] 曲永强,潘建国,梁利东,杨祖锋,王海龙. 2012. 燕辽裂陷槽中元古界不整合面的性质. 沉积与特提斯地质, 32(2): 11-22. [Qu Y Q,Pan J G,Liang L D,Yang Z F,Wang H L.2012. The attributes of the Mesoproterozoic unconformities in the Yanliao rift trough. Sedimentary Geology and Tethyan Geology, 32(2): 11-22] [21] 宋天锐,赵震,王长尧,杨慧宁,刘仲秋,须湘官. 1991. 华北元古宙沉积岩. 北京: 北京科学技术出版社,1-201. [Song T R,Zhao Z,Wang C Y,Yang H N,Liu Z Q,Xu X G.1991. North China Proterozoic Sedimentary Rocks. Beijing: Beijing Science and Technology Press,1-201] [22] 苏文博,李怀坤,Huff W D,Ettensohn F R,张世红,周红英,万渝生. 2010. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义. 科学通报, 55(22): 2197-2206. [Su W B,Li H K,Huff W D,Ettensohn F R,Zhang S H,Zhou H Y,Wan Y S.2010. SHRIMP U-Pb dating for a K-bentonite bed in the Tieling Formation,North China. Chinese Science Bulletin, 55(22): 2197-2206] [23] 汤冬杰,史晓颖,马坚白,史清. 2016. 中元古代海绿石: 前寒武纪海洋浅化变层深度的潜在指示矿物. 地学前缘, 23(6): 219-235. [Tang D J,Shi X Y,Ma J B,Shi Q.2016. Mesoproterozoic glaucony as a potential mineral proxy for shallow chemocline in the Precambrian ocean. Earth Science Frontiers, 23(6): 219-235] [24] 王松山,桑海清,裘冀,陈孟莪,李明荣. 1995. 蓟县剖面杨庄组和雾迷山组形成年龄的研究. 地质科学,(2): 166-173. [Wang S S,Sang H Q,Qiu J,Chen M E,Li M R.1995. The forming ages of Yangzhuang and Wumishan formations in Jixian section,Northern China. Chinese Journal of Geology,(2): 166-173] [25] 赵全基,彭汉昌,张壮域. 1992. 中国陆架海绿石分布特征及其意义. 海洋科学, 16(5): 41-44. [Zhao Q J,Peng H C,Zhang Z Y.1992. Distribution characteristics of glauconite and significance on the shelf of China. Marine Sciences, 16(5): 41-44] [26] 周锡强,李楠,梁光胜,李林,汤冬杰,付星梅. 2009. 天津蓟县中元古界铁岭组叠层石灰岩中原地海绿石的沉积学意义. 地质通报, 28(7): 173-178. [Zhou X Q,Li N,Liang G S,Li L,Tang D J,Fu X M.2009. Sedimentary significance of the autochthonous glauconite in stromatolitic limestones of the Mesoproterozoic Tieling Formation in Jixian,Tianjin,North China. Geological Bulletin of China, 28(7): 173-178] [27] Amorosi A,Guidi R,Mas R,Falanga E.2012. Glaucony from the Cretaceous of the Sierra de Guadarrama(Central Spain)and its application in a sequence-stratigraphic context. International Journal of Earth Sciences, 101(2): 415-427. [28] Amorosi A.1995. Glaucony and sequence stratigraphy: A conceptual framework of distribution in siliciclastic sequences. Journal of Sedimentary Research,65B(4): 419-425. [29] Awramik S M,Sprinkle J.1999. Proterozoic stromatolites: The first marine evolutionary biota. Historical Biology, 13(4): 241-253. [30] Banerjee S,Mondal S,Chakraborty P P,Meena S S.2015. Distinctive compositional characteristics and evolutionary trend of Precambrian glaucony: Example from Bhalukona Formation,Chhattisgarh basin,India. Precambrian Research, 271: 33-48. [31] Banerjee S,Bansal U,Thorat A V.2016. A review on palaeogeographic implications and temporal variation in glaucony composition. Journal of Palaeogeography, 5(1): 43-71. [32] Bartley J K.1996. Actualistic taphonomy of Cyanobacteria: Implications for the Precambrian fossil record. Palaios, 11(6): 571-586. [33] Bartley J K,Kah L C,Frank T D,Lyons T W.2015. Deep-water microbialites of the Mesoproterozoic Dismal Lakes Group: Microbial growth,lithification,and implications for coniform stromatolites. Geobiology, 13(1): 15. [34] Baum G R,Vail P R.1988. Sequence stratigraphic concepts applied to Paleogene outcrops,Gulf and Atlantic basins. Sea-Level Changes,42:309-327. [35] Baumgartner L K,Reid R P,Dupraz C,Decho A W,Buckley D H,Spear J R,Przekop K M,Visscher P T.2006. Sulfate reducing bacteria in microbial mats: Changing paradigms,new discoveries. Sedimentary Geology, 185(3-4): 131-145. [36] Bosak T,Knoll A H,Petroff A P.2013. The meaning of stromatolites. Annual Review of Earth & Planetary Sciences, 41: 21-44. [37] Chafetz H S,Reid A.2000. Syndepositional shallow-water precipitation of glauconitic minerals. Sedimentary Geology, 136(1): 29-42. [38] Chen J,Zhang H,Xing Y,Ma G.1981. On the Upper Precambrian(Sinian Suberathem)in China. Precambrian Research, 15(3): 207-228. [39] Défarge C,Trichet J,Jaunet A M,Robert M,Tribble J,Sansone F J.1996. Texture of microbial sediments revealed by cryo-scanning electron microscopy. Journal of Sedimentary Research, 66(5): 935-947. [40] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth Science Reviews, 96(3): 141-162. [41] Grotzinger J P,Knoll A H.1999. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks? Annual Review of Earth & Planetary Sciences, 27(1): 313. [42] Harris L C,Whiting B M.2000. Sequence-stratigraphic significance of Miocene to Pliocene glauconite-rich layers,on- and offshore of the US Mid-Atlantic margin. Sedimentary Geology, 134(1-2): 129-147. [43] Hower J.1962. Some factors concerning the nature and origin of glauconite. American Mineralogist, 46(3): 313-334. [44] Kitamura A.1998. Glaucony and carbonate grains as indicators of the condensed section: Omma Formation,Japan. Sedimentary Geology, 122(1-4): 151-163. [45] Odin G S,Matter A.1981. De glauconiarum origine. Sedimentology, 28(5): 121-151. [46] Odin G S,Fullagar P D.1988. Geological significance of the glaucony facies. Developments in Sedimentology, 45: 295-332. [47] Rickard D,Mussmann M,Steadman J A.2017. Sedimentary sulfides. Developments in Sedimentology, 65(2): 543-604. [48] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(s1): 179-214. [49] Riding R.2011a. The nature of stromatolites: 3,500 million years of history and a century of research. Advances in Stromatolite Geobiology, 131: 29-74. [50] Riding R.2011b. Microbialites,stromatolites,and thrombolites. Encyclopedia of Earth Sciences, 635-654. [51] Schieber J.2002. Sedimentary pyrite: A window into the microbial past. Geology, 30(6): 531-534. [52] Schwarzacher W.1993. Cyclostratigraphy and the Milankovitch theory. Elsevier, 16(4): 113-114. [53] Tosti F,Riding R.2017. Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation,ca 1420Ma,North China. Sedimentology,64(4):871-902. [54] Kalkowsky E.1908. Oolith und Stromatolith im norddeutschen Buntsandstein. Zeitschrift Der Deutschen Geologischen Gesellschaft, 60: 68-125.