Differential diagenesis and reservoir characteristics of bio-clastic limestone: A case study on the Cretaceous Mishrif Formation in HF Oilfield,Iraq
Yu Yi-Chang1, Song Xin-Min1, Guo Rui1, Gao Xing-Jun1, Lin Min-Jie1, Yi Li-Ping1, Han Hai-Ying1, Chen Jun2, Deng Ya1, Li Feng-Feng1, Liu Hang-Yu3
1 Research Institute of Petroleum Exploration & Development,PetroChina,Beijing 100083; 2 China National Oil-Gas Exploration & Development Co., Ltd.,Beijing 100034; 3 School of Earth and Space Sciences,Peking University,Beijing 100871
Abstract The Cretaceous Mishrif Formation in the Middle East was developed in a warm and humid environment,mainly consisting of bio-clastic limestone deposits. Based on core observations,cast thin sections,whole rock analysis,petrophysical properties,and high-pressure mercury injection tests,bio-clastic types,distribution,composition,differential diagenesis and reservoir characteristics of the Mishrif Formation in HF Oilfield were systematically studied to clarify the relationship between bio-clastic and intrinsic heterogeneity. The Mishrif Formation is mainly composed of benthic foraminifera,non-fixed bivalves,thick crustaceans,and echinoderms,containing a small amount of bryozoans,algae and sponge animals. The distribution characteristics of biological debris are consistent with the living environment. The content,type,composition and size of biological debris are important signs of the depositional environment. The original composition of these bio-clastics includes unstable aragonite,high-magnesium calcite, and relatively stable medium-low magnesium calcite,which mainly experienced various degrees of soft decay,micritization, and biological drilling in the seawater environment,dissolution and cementation in the atmospheric fresh water environment,compaction pressure dissolution and particle disruption in the buried environment. The differences in sedimentary environment,particle size,morphological characteristics,and composition of various types of bio-clastics have led to differential diagenesis,which controlled pore type,physical properties,and pore-throat structure of bio-clastic limestone,forming a complex pore-penetration relationship. As the content of bio-debris increases,the physical properties of the reservoir become better.The low-energy depositional environments mainly developed benthic foraminifera and non-fixed bivalve detritus are characterized by weak dissolution and strong cementation. Micropores,intercrystalline pores, and intragranular pores were mainly developed. The physical properties are poor,and pore throat distribution shows a fine micro-throat single peak pattern. The high energy sedimentary environment with rudist and echinoderms debris is characterized by strong dissolution and weak cementation. The main development of mold pores,intergranular pores, and intergranular dissolution pores with good physical properties,pore throat distribution shows a very broad range mainly with coarse pore throat,which is the most favorable reservoir type in the study area. The Cretaceous bio-clastic limestone,represented by the Mishrif Formation in HF Oilfield,was widely developed in the Middle East. The above study is of great significance to the development of bio-clastic limestone oil and gas in the Middle East.
Corresponding Authors:
Gao Xing-Jun,born in 1972,doctor,is mainly engaged in research of reservoir development geology. E-mail: gaoxingjun@petrochina.com.cn.
About author: Yu Yi-Chang,born in 1991,is a Ph.D. candidate of Research Institute of Petroleum Exploration & Development,PetroChina. He is mainly engaged in research of carbonate development geology. E-mail: yuyichang@petrochina.com.cn.
Cite this article:
Yu Yi-Chang,Song Xin-Min,Guo Rui et al. Differential diagenesis and reservoir characteristics of bio-clastic limestone: A case study on the Cretaceous Mishrif Formation in HF Oilfield,Iraq[J]. JOPC, 2018, 20(6): 1053-1067.
Yu Yi-Chang,Song Xin-Min,Guo Rui et al. Differential diagenesis and reservoir characteristics of bio-clastic limestone: A case study on the Cretaceous Mishrif Formation in HF Oilfield,Iraq[J]. JOPC, 2018, 20(6): 1053-1067.
[1] 陈洪德,钟怡江,许效松,陈安清,吴朝盛,郑浩夫. 2014. 中国西部三大盆地海相碳酸盐岩台地边缘类型及特征. 岩石学报, 30(3): 609-621. [Chen H D,Zhong Y J,Xu X S,Chen A Q,Wu C S,Zheng H F.2014. Types and characteristics of carbonate platform margins of marine carbonate rock in three major basins in western China. Acta Petrologica Sinica, 30(3): 609-621] [2] 邓虎成,周文,郭睿,伏美燕,谢润成,陈文玲,彭先锋,肖睿. 2014. 伊拉克艾哈代布油田中—下白垩统碳酸盐岩储集层孔隙结构及控制因素. 岩石学报, 30(3): 801-812. [Deng H C,Zhou W,Guo R,Fu M Y,Xie R C,Chen W L,Peng X F,Xiao R.2014. Pore structure characteristics and control factors of carbonate reservoirs: The Middle-Lower Cretaceous formation,AI Hardy cloth Oilfield,Iraq. Acta Petrologica Sinica, 30(3): 801-812] [3] 范嘉松. 2005. 世界碳酸盐岩油气田的储集层特征及其成藏的主要控制因素. 地学前缘, 12(3): 23-30. [Fan J S.2005. Characteristics of carbonate reservoirs for oil and gas fields in the world and essential controlling factors for their formation. Earth Science Frontiers, 12(3): 23-30] [4] 苟宗海. 1996. 西藏白垩纪特提斯海的固着蛤类(RUDISTS). 沉积与特提斯地质, 20: 150-159. [Gou Z H.1996. Rudists form the Cretaceous Tethys in Xizang(Tibet). Sedimentary Geology and Tethyan Geology, 20: 150-159] [5] 郭睿,伏美燕,赵丽敏,段天向,韩海英,黄婷婷,孙藏军. 2014. 艾哈代布油田 Khasib 组沉积相及其对储集层发育的控制. 矿物岩石, 34(1): 95-103. [Guo R,Fu M Y,Zhao L M,Duan T X,Han H Y,Hu T T,Su Z J.2014. Sediment facies of Khasib Formation in Ahdeb Oilfield and its controlling effects on carbonate reservoir development. Journal of Mineralogy and Petrology, 34(1): 95-103] [6] 金值民,谭秀成,郭睿,赵丽敏,钟原,陈延涛. 2018. 伊拉克哈法亚油田白垩系Mishrif组碳酸盐岩孔隙结构及控制因素. 沉积学报,1-16[2018-09-15]. https: //doi.org/10.14027/j.issn.1000-0550.2018.078. [Jin Z M,Tan X C,Guo R,Zhao L M,Zhong Y,Chen Y T.2018. Pore structure characteristics and control factors of carbonate Reservoirs: The Cretaceous Mishrif Formation,Halfaya oilfield,Iraq. Acta Sedimentologica Sinica,1-16[2018-09-15]. https: //doi.org/10.14027/j.issn.1000-0550.2018.078] [7] 刘政,何登发,童晓光,杜鹏,李涤. 2011. 北海盆地大油气田形成条件及分布特征. 中国石油勘探, 16(3): 31-43. [Liu Z,He D F,Tong X G,Du P,Li D.2011. Formation and distribution of giant oil and gas fields in North Sea Basin. China Petroleum Exploration, 16(3): 31-43] [8] 马永生,何登发,蔡勋育,刘波. 2017. 中国海相碳酸盐岩的分布及油气地质基础问题. 岩石学报, 33(4): 1007-1020. [Ma Y S,He D F,Cai X Y,Liu B.2017. Distribution and fundamental science questions for petroleum geology of marine carbonate in China. Acta Petrologica Sinica, 33(4): 1007-1020] [9] 彼得A. 肖勒,达娜 S. 厄尔默—肖勒,著. 姚根顺,沈安江,潘文庆,郑兴平,郑剑锋,陆俊明,罗宪婴,译. 2010. 碳酸盐岩岩石学: 颗粒、结构、孔隙及成岩作用. 北京: 石油工业出版社. [Scholle P A,Ulmer-Scholle D S. Translated by Yao G S,Shen A J,Pan W Q,Zheng X P,Zheng J F,Lu J M,Luo X Y. 2010. A Color Guide to the Petrography of Carbonate Rocks: Grains,Textures,Porosity,Diagenesis. Beijing: Petroleum Industry Press] [10] 孙晓伟,郭睿,田中元,邓亚,韩海英,衣英杰,徐振永,陈良,黄彤飞. 2017. 孔隙型碳酸盐岩储集层分类及主控因素: 以伊拉克西古尔纳油田 Mishrif组为例. 地质科技情报, 36(1): 150-155. [Sun X W,Guo R,Tian Z Y,Deng Y,Han H Y,Yi Y J,Xu Z Y,Chen L,Huang T F.2017. Classification and main controlling factors of porous carbonate reservoirs: A case study from Mishrif Formation,West Qurna Oilfield,Iraq. Geological Science and Technology Information, 36(1): 150-155] [11] 田泽普,刘波,高计县. 2016. 伊拉克鲁迈拉油田白垩系Mishrif组碳酸盐岩生物碎屑和成岩作用特点. 地层学杂志, 40(1): 41-50. [Tian Z P,Liu B,Gao J X.2016. Diagenesis of bioclastic carbonates of the Cretaceous Mishrif Formation in the Rumaila Oil Field,Iraq. Journal of Stratigraphy, 40(1): 41-50] [12] 王君,郭睿,赵丽敏,李文科,周文,段天向. 2016. 颗粒滩储集层地质特征及主控因素: 以伊拉克哈法亚油田白垩系Mishrif组为例. 石油勘探与开发, 43(3): 367-377. [Wang J,Guo R,Zhao L M,Li W K,Zhou W,Duan T X.2016. Geological features of grain bank reservoirs and the main controlling factors: A case study on Cretaceous Mishrif Formation,Halfaya Oilfield,Iraq. Petroleum Exploration and Development, 43(3): 367-377] [13] 王昱翔,周文,郭睿,伏美燕,沈忠民,赵丽敏,陈文玲. 2017. 伊拉克哈勒法耶油田Mishrif组滩相储集层特征及其成因分析. 吉林大学学报(地球科学版), 47(4): 1007-1020. [Wang Y X,Zhou W,Guo R,Fu M Y,Shen Z M,Zhao L M,Chen W L.2017. Shoal facies reservoir characteristics and genesis of Mishrif Formation in Halfaya Oilfield,Iraq. Journal of Jilin University(Earth Science Edition), 47(4): 1007-1020] [14] 文龙,王文之,张健,罗冰. 2017. 川中高石梯—磨溪地区震旦系灯影组碳酸盐岩岩石类型及分布规律. 岩石学报, 33(4): 1285-1294. [Wen L,Wang W Z,Zhang J,Luo B.2017. Classification of Sinian Dengying Formation and sedimentary evolution mechanism of Gaoshiti-Moxi area in central Sichuan Basin. Acta Petrologica Sinica, 33(4): 1285-1294] [15] 张宁宁,何登发,孙衍鹏,李浩武. 2014. 全球碳酸盐岩大油气田分布特征及其控制因素. 中国石油勘探, 19(6): 54-65. [Zhang N N,He D F,Sun Y P,Li H W.2014. Distribution patterns and controlling factors of giant carbonate rock oil and gas fields worldwide. China Petroleum Exploration, 19(6): 54-65] [16] Alsharhan A,Nairan A M.1997. Sedimentary basins and petroleum geology of the Middle East. Amsterdam: Elsevier Science,1-942. [17] Aqrawi A A M.1998. Paleozoic stratigraphy and petroleum systems of the western and southwestern desert of Iraq. GeoArabia, 3(2): 229-248. [18] Aqrawi A A M,Goff J C,Horbury A D,Sadooni F N. 2010. The Petroleum Geology of Iraq. Beaconsfield: Scientific Press. [19] Bryan P J,Mcclintock J B,Hopkins T S.1997. Structural and chemical defenses of echinoderms from the northern Gulf of Mexico. Journal of Experimental Marine Biology & Ecology, 210(2): 173-186. [20] Carannante G,Ruberti D,Sirna G.1998. Lower Senonian rudist limestones in the Sorrento Peninsula sequences(southern Italy). Geobios,Mem Spec, 22: 47-68. [21] Davies R B,Casey D M,Horbury A D,Sharland P M,Simmons M D.2002. Early to Mid Cretaceous mixed carbonate-siliciclastic shelfal systems: Examples,issues and models from the Arabian Plate. GeoArabia, 7(3): 541-598. [22] Föllmi K B.2012. Early Cretaceous life,climate and anoxia. Cretaceous Research, 35: 230-257. [23] Fursich F T,Oschmann W.1993. Shell beds as tool in basin analysis: The Jurassic of Kachchh,western India. J Geol Soc London, 150: 169-185. [24] Gaddo J H.1971. The Mishrif Formation palaeoenvironment in the Rumaila/Tuba/Zubair region of S Iraq. Journ Geol Soc Iraq, 4: 1-2. [25] Jacob D E,Soldati A L,Wirth R,Huth J,Wehrmeister U,Hofmeister W.2008. Nanostructure,composition and mechanisms of bivalve shell growth. Geochimica et Cosmochimica Acta, 72(22): 5401-5415. [26] Kauffman E G,Johnson C C.1988. The morphological and ecological evolution of Middle and Upper Cretaceous reef-building Rudistids. Palaios,Ancient Reef Ecosystems Theme Issue, 3(2): 194-216. [27] Kauffman E G,Johnson C C.1988. The morphological and ecological evolution of Middle and Upper Cretaceous reef-building rudistids. SEPM,Society for Sedimentary Geology, 194-216. [28] Mahdi T A,Aqrawi A A M,Horbury A D,Sherwani G H.2013. Sedimentological characterization of the mid-Cretaceous Mishrif reservoir in southern Mesopotamian Basin,Iraq. Geoarabia, 18(1): 139-174. [29] Mahdi T A,Aqrawi A A M.2014. Sequence stratigraphic analysis of the mid-Cretaceous Mishrif Formation,southern Mesopotamian Basin,Iraq. Journal of Petroleum Geology, 37(3): 287-312. [30] Pascualcebrian E,Götz S,Boverarnal T,Skelton P W,Gili E,Salas R,Stinnesbeck W.2016. Calcite/aragonite ratio fluctuations in Aptian rudist bivalves: Correlation with changing temperatures. Geology, 44(2): G37389.1. [31] Schulze F,Marzouk A M,Bassiouni M A A,kuss J.2004. The late Albian-Turonian carbonate platform succession of west-central Jordan: Stratigraphy and crises. Cretaceous Research, 25: 709-737. [32] Sadooni F N.2005. Possible hydrocarbon stratigraphic entrapment in the Upper Cretaceous basin-margin rudist build-ups of the Mesopotamian Basin,southern Iraq. Cretaceous Research, 26: 213-244. [33] Zhong Y,Tan X C,Zhao L M,Guo R,Li F,Jin Z M.2018a. Identification of facies-controlled eogenetic karstification in the Upper Cretaceous of the Halfaya Oilfield and its impact on reservoir capacity. Geological Journal,1-16[2018-09-15]. https: //doi.org/10.1002/gj. 3193. [34] Zhong Y,Zhou L,Tan X,Guo R,Zhao L M,Jin Z M,Chen Y T.2018b. Characteristics of depositional environment and evolution of Upper Cretaceous Mishrif Formation,Halfaya Oilfield,Iraq based on sedimentary microfacies analysis. Journal of African Earth Sciences, 140: 151-168.