Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution
Abstract During the Early Cenozoic,the southeastern margin of Eurasian Plate has experienced multiple episodes of large-scale palaeographical changes. Overall,with the rapid spreading of the South China Sea(SCS),the Mesozoic orogenic belts in southeast China Continental Block continuingly suffered from erosional processes. Drastic variations of provenance distribution patterns took place in the northern SCS in light of our Eocene-Lower Miocene “source-to-sink”analysis. During the Eocene-Early Oligocene,“Kontum-Ying-Qiong”River has delivered large abundance of materials from the western palaeo-uplifts into the eastern SCS basins. Briefly,most southern areas including Zhu-II Depression were dominated by this western sedimentary source,while Zhu-I Depression was mainly influenced from the palaeo-Pearl River to the north. During the Late Oligocene,Pearl River system turned to develop into a larger scale,which gradually exceeded the impact of the western provenance. The sedimentary distribution pattern was completely changed when it came to the Early Miocene. With much less hindrance from Panyu-Low-Uplift in the middle,the Pearl River was then transporting voluminous sediments from the South China hinterland into Zhu-II Depression. By contrast,“Kontum-Ying-Qiong”River simply cast fairly limited influences on Qiongdongnan Basin. From west to east,the provenance was gradully replaced from Kunsong Block to Hainan Island. Actually,the Central Canyon which was subsequently formed in the Late Miocene,which was considered as a residual structure of the palaeo “Kontum-Ying-Qiong”River. As a conclusion,the discovery of palaeo “Kontum-Ying-Qiong”River as well as the Pearl River evolution reconstruction proves to be of great significance on (1)both palaeogeography of the SCS and palaeogeomorphology of the southeastern Eurasian margin in the Early Cenozoic; (2)the petroleum industrial exploration on the SCS basins.
Fund:Co-funded by the National Nature Science Foundation of China(Nos.91128207,91528302 and 41576059)and the National Science and Technology Major Project of China(No.2016ZX05026004-002)
About author: Shao Lei,born in 1960, doctor of science, is a professor of Tongji University. Now he is mainly specializing in sedimentology and geochemistry. E-mail: lshao@tongji.edu.cn.
Cite this article:
Shao Lei,Cui Yu-Chi,Qiao Pei-Jun et al. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution[J]. JOPC, 2019, 21(2): 216-231.
Shao Lei,Cui Yu-Chi,Qiao Pei-Jun et al. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution[J]. JOPC, 2019, 21(2): 216-231.
[1] 陈长民,施和生,徐仕策. 2003. 珠江口盆地(东部)第三系油气藏形成条件. 北京: 科学出版社, 1-266. [Chen C M,Shi H S,Xu S C.2003. The Tertiary Reservoir-forming Conditions in the Eastern Pearl River Mouth Basin. Beijing: Science Press,1-266] [2] 龚再升,李思田. 1997. 南海北部大陆边缘盆地分析与油气聚集. 北京: 科学出版社. [Gong Z S,Li S T.1997. Continental Margin Basin Analysis and Hydrocarbon Accumulation of the Northern South China Sea. Beijing: Science Press] [3] 何廉声. 1987. 南海地质构造图. 见: 何廉声. 南海地质地球物理图集. 广州: 广东科技出版社. [He L S.1987. Explanation for Map of Tectonics. In: He L S. Atlas of Geology and Geophysics of South China Sea. Guangzhou: Guangdong Science & Technology Press] [4] 吕明. 2002. 莺—琼盆地低位沉积模式的新探讨. 中国海上油气(地质), 16(4): 220-230. [Lü M.2002. A new discussion on lowstand deposition models in Ying-Qiong Basin. China Offshore Oil and Gas(Geology), 16(4): 222-230] [5] 吕文正,柯长志,吴声迪,刘建华,林长松. 1987. 南海中央海盆条带磁异常特征及构造演化. 海洋学报, 9(1): 69-78. [Lü W Z,Ke C Z,Wu S D,Liu J H,Lin C S.1987. Magnetic anomalies and structural evolution of the central subbasin of South China Sea. Acta Oceanologica Sinica, 9(1): 69-78] [6] 庞雄,陈长民,吴梦霜,何敏,吴湘杰. 2006. 珠江深水扇与周边重要地质事件. 地球科学进展, 21(8): 7-14. [Pang X,Chen C M,Wu M S,He M,Wu X J.2006. The Pearl River deep-water fan systems and significant geological events. Advances in Earth Science, 21(8): 7-14] [7] 邵磊,李献华,汪品先,翦知湣,韦刚健,庞雄,刘颖. 2004. 南海渐新世以来构造演化的沉积记录: ODP1148站深海沉积物中的证据. 地球科学进展, 19(4): 539-544. [Shao L,Li X H,Wang P X,Jian Z M,Wei G J,Pang X,Liu Y.2004. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene-evidence from deep sea sediments of ODP Site 1148. Advances in Earth Science, 19(4): 539-544] [8] 邵磊,雷永昌,庞雄,施和生. 2005. 珠江口盆地构造演化及对沉积环境的控制作用. 同济大学学报(自然科学版), 33(9): 1177-1181. [Shao L,Lei Y C,Pang X,Shi H S.2005. Tectonic evolution and its controlling for sedimentary environment in Pearl River Mouth Basin. Journal of Tongji University(Natural Science), 33(9): 1177-1181] [9] 邵磊,庞雄,陈长民,施和生,李前裕,乔培军. 2007. 南海北部渐新世末沉积环境及物源突变事件. 中国地质, 34(6): 1022-1031. [Shao L,Pang X,Chen C M,Shi H S,Li Q Y,Qiao P J.2007. Terminal Oligocene sedimentary environments and abrupt provenance change event in the northern South China Sea. Geology in China, 34(6): 1022-1031] [10] 汪品先,翦知湣,赵泉鸿,李前裕,王汝建,刘志飞,吴国瑄,邵磊,王吉良,黄宝琦,房殿勇,田军,李建如,李献华,韦刚健,孙湘君,罗运利,苏新,茅绍智,陈木宏. 2003. 南海三千万年的深海记录. 科学通报, 48(21): 2206-2215. [Wang P X,Jian Z M,Zhao Q H,Li Q Y,Wang R J,Liu Z F,Wu G X,Shao L,Wang J L,Huang B Q,Pang D Y,Tian J,Li J R,Li X H,Wei G J,Sun X J,Luo Y L,Su X,Mao S Z,Chen M H.2003. The deep sea record in South China Sea since 30 Ma. Chinese Science Bulletin, 48(21): 2206-2215] [11] 王英民,徐强,李冬,韩建辉,吕明,王永凤,李卫国,王海荣. 2011. 南海西北部晚中新世的红河海底扇. 科学通报, 56(10): 781-787. [Wang Y M,Xu Q,Li D,Han J H,Lü M,Wang Y F,Li W G,Wang H R.2011. Late Miocene Red River submarine fan,northwestern South China Sea. Chinese Science Bulletin, 56(10): 781-787] [12] 向绪洪,邵磊,乔培军,赵梦. 2011. 珠江流域沉积物重矿物特征及其示踪意义. 海洋地质与第四纪地质, 31(6): 27-35. [Xiang X H,Shao L,Qiao P J,Zhao M.2011. Characteristics of heavy minerals in Pearl River sediments and their implications for provenance. Marine Geology & Quaternary Geology, 31(6): 27-35] [13] 谢玉洪,范彩伟. 2010. 莺歌海盆地东方区黄流组储层成因新认识. 中国海上油气, 22(6): 355-359,386. [Xie Y H,Fan C W.2010. Some new knowledge about the origin of Huangliu Formation reservoirs in Dongfang area,Yinggehai Basin. China Offshore Oil and Gas, 22(6): 355-359,386] [14] 姚伯初. 1991. 南海海盆在新生代的构造演化. 南海地质研究,(3): 9-23. [Yao B C.1991. Tectonic evolution of the South China Sea in Cenozoic. Geological Research of South China Sea,(3): 9-23] [15] 张功成,王璞珺,吴景富,刘世翔,谢晓军. 2015. 边缘海构造旋回: 南海演化的新模式. 地学前缘, 22(3): 27-37. [Zhang G C,Wang P J,Wu J F,Liu S X,Xie X J.2015. Tectonic cycle of marginal oceanic basin. Earth Science Frontiers, 22(3): 27-37] [16] 赵梦,邵磊,乔培军. 2015. 珠江沉积物碎屑锆石U-Pb年龄. 同济大学学报(自然科学版), 43(6): 915-923. [Zhao M,Shao L,Qiao P J.2015. Characteristics of detrital zircon U-Pb geochronology of the Pearl River sands and its implication on provenances. Journal of Tongji University(Natural Science), 43(6): 915-923] [17] 周蒂,颜佳新,丘元禧,陈汉宗,孙珍. 2003. 南海西部围区中特提斯东延通道问题. 地学前缘, 10(4): 469-477. [Zhou D,Yan J X,Qiu Y X,Chen H Z,Sun Z.2003. Route for the eastern extension of meso-Tethys in the western environs of the South China Sea. Earth Science Frontiers, 10(4): 469-477] [18] 周蒂,孙珍,陈汉宗,丘元禧. 2005. 南海及其围区中生代岩相古地理和构造演化. 地学前缘, 12(3): 204-218. [Zhou D,Sun Z,Chen H Z,Qiu Y X.2005. Mesozoic lithofacies,paleogeography and tectonic evolution of the South China Sea and surrounding areas. Earth Science Frontiers, 12(3): 204-218] [19] 朱伟林,吴景富,张功成,任建业,赵志刚,吴克强,钟锴,刘世翔. 2015. 中国近海新生代盆地构造差异性演化及油气勘探方向. 地学前缘, 22(1): 88-101. [Zhu W L,Wu J F,Zhang G C,Ren J Y,Zhao Z G,Wu K Q,Zhong K,Liu S X.2015. Discrepancy tectonic evolution and petroleum exploration in China offshore Cenozoic basins. Earth Science Frontiers, 22(1): 88-101] [20] Anczkiewicz R,Viola G,Müntener O,Thirlwall M F,Villa Igor M,Nguyen Q Q. 2007. Structure and shearing conditions in the Day Nui Con Voi massif: Implications for the evolution of the Red River shear zone in northern Vietnam. Tectonics 26: TC2002. 2007. Structure and shearing conditions in the Day Nui Con Voi massif: Implications for the evolution of the Red River shear zone in northern Vietnam. Tectonics 26: TC2002. http://dx.doi.org/10.1029/2006TC001972. [21] Cao L C,Jiang T,Wang Z F,Zhang Y Z,Sun H.2015. Provenance of Upper Miocene sediments in the Yinggehai and Qiongdongnan basins,northwestern South China Sea: Evidence from REE,heavy minerals and zircon U-Pb ages. Marine Geology, 361: 136-146. [22] Cao L C,Shao L,Qiao P J,Zhao Z G,van Hinsbergen D J J.2018. Early Miocene birth of modern Pearl River recorded low-relief,high-elevation surface formation of SE Tibetan Plateau. Earth and Planetary Science Letters, 496: 120-131. [23] Clift P,Lee J I,Clark M K,Blusztajn J.2002. Erosional response of South China to arc rifting and monsoonal strengthening: A record from the South China Sea. Marine Geology, 184: 207-226. [24] Clift P D,Layne G D,Blusztajn J.2004. The erosional record of Tibetan uplift in the East Asian marginal seas. Continent-ocean Interactions in the East Asian Marginal seas. American Geophysical Union Monograph,149: 255-282. [25] Clift P D,Blusztajn J,Nguyen D A.2006. Large-scale drainage capture and surface uplift in eastern Tibet-SW China before 24Ma inferred from sediments of the Hanoi Basin,Vietnam. Geophysical Research Letters,33: L19403. [26] Cui Y C,Shao L,Qiao P J,Pei J X,Zhang D J,Huyen Tran.2018. Upper Miocene-Pliocene provenance evolution of the Central Canyon in northwestern South China Sea. Marine Geophysical Research: 1-13. DOI: 10.1007/s11001-018-9359-2. [27] Larsen H C, Mohn G, Nirrengarten M, Sun Z, Stock J, Jian Z, Klaus A, Alvarez-Zarikian C A, Boaga J, Bowden S A, Briais A, Chen Y, Cukur D, Dadd K, Ding W, Dorais M, Ferré E C, Ferreira F, Furusawa A, Gewecke A, Hinojosa J, Höfig T W, Hsiung K H, Huang B, Huang E, Huang X L, Jiang S, Jin H, Johnson B G, Kurzawski R M, Lei C, Li B, Li L, Li Y, Lin J, Liu C, Liu C, Liu Z, Luna A J, Lupi C, McCarthy A, Ningthoujam L, Osono N, Peate D W, Persaud P, Qiu N, Robinson C, Satolli S, Sauermilch I, Schindlbeck J C, Skinner S, Straub S, Su X, Su C, Tian L, van der Zwan F M, Wan S, Wu H, Xiang R, Yadav R, Yi L, Yu P S, Zhang C, Zhang J, Zhang Y, Zhao N, Zhong G,Zhong L.2018. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geoscience,11: 782-789. [28] Leloup P H,Lacassin R,Tapponnier P,Scharer U,Zhong D,Liu X,Zhang L,Ji S,Trinh P T.1995. The Ailao Shan-Red River shear zone(Yunnan,China),Tertiary transformboundary of IndoChina. Tectonophysics, 251(3-10): 13-84. [29] Li C F,Xu X,Lin J,Sun Z,Zhu J,Yao Y J,Zhao X X,Liu Q S,Kulhanek D K,Wang J,Song T R.2015. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry,Geophysics,Geosystems, 15(12): 4958-4983. [30] Li X H,Wei G J,Shao L,Liu Y,Liang X R,Jian Z M,Sun M,Wang P X.2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: A response to Cenozoic tectonic in SE Asia. Earth and Planetary Science Letters, 211: 207-220. [31] Li Z X,Li X H.2007. Formation of the 1300-km-wide intracontinental orogeny and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2): 179-182. [32] Li Z X,Li X H,Chuang S L,Lo C H,Xu X S,Li W X.2012. Magmatic switch-on and switch-off along the South China continental margin since the Permian: Transition from an Andean-type to a Western Pacific-type plate boundary. Tectonophysics,532-535: 271-290. [33] Shao L,Cao L C,Pang X,Jiang T,Qiao P J,Zhao M.2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea. Geochemistry,Geophysics,Geosystems, 17(2): 255-269. [34] Shao L,Meng A H,Li Q Y,Qiao P J,Cui Y C,Cao L C,Chen S H.2017. Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea. Marine Geology, 394: 39-51. [35] Shao L,Cui Y C,Stattegger K,Zhu W L,Qiao P J,Zhao Z G.2018. Drainage control of Eocene to Miocene sedimentary records in the southeastern margin of Eurasian Plate. Geological Society of America Bulletin,DOI: 10.1130/B32053.1/4539320/b32053.pdf. [36] van Hoang L,Wu F Y,Clift P D,Wysocka A,Swierczewska A.2009. Evaluating the evolution of the Red River system based on in situ U-Pb dating and Hf isotope analysis of zircons. Geochemistry,Geophysics,Geosystems, 10(11): 292-310. [37] Wang P X,Prell W L,Blum P.2000. Proceedings of Ocean Drilling Program,Initial Reports,184. College Station TX: Ocean Drilling Program,Texas A & M University. Doi: 10.2973/odp.proc.ir.184.2000. [38] Yan Y,Carter A,Palk C,Brichau S,Hu X Q.2011. Understanding sedimentation in the Song Hong-YinggehaiBasin,South China Sea. Geochemistry,Geophysics,Geosystems,12,Q06014,DOI: 10.1029/2011GC003533. [39] Zhao M,Shao L,Liang J S,Li Q Y.2015. No Red River capture since the late Oligocene: Geochemical evidence from the northwestern South China Sea. Deep-Sea Research Ⅱ, 122: 185-194. [40] Zhao Q.2005. Late Cainozoic ostracod faunas and paleoenvironmental changes at ODP site 1148,South China Sea. Marine Micropaleontology, 54: 27-47. [41] Zheng H B,Clift P D,Wang P,Tada R,Jia J T,He M Y,Jourdan F.2013. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110: 7556-7561.