Abstract Core D37 and FJ3-12,collected from the offshore area of the Xinhua Bay,Fujian Province,were analyzed by γ-spectrometer to test the activities of 210Pb,226Ra and 137Cs and the activity characters of three nuclide with depth were abtained. It was demonstrated that there existed some differences in mean sedimentation rates of Core D37 and FJ3-12 through CFCS and CRS models for 210Pb inventories and the 137Cs time-scale method, respectively. After eliminating the effect of grain size changes on the nuclide profile,the difference between varied sampling depth is obvious. It is also suggested that the incompleteness of logarithmic attenuation profile(i.e., the sampling depth less than that bearing 210Pb background value)has an adverse effect on calculating sedimentation rates by CFCS and CRS models,even more on CRS model by less incompleteness of the profile. Therefore,a rectification method was proposed to calculate the mean sedimentation rates for the upper boundary of sustaining 210Pb(or none 210Pbex)layer by the CFCS model,and then sedimentary chronology of the study cores by the CRS model with this deduced data. And the mean sedimentation rates of D37 and FJ3-12 are 2.76cm/yr and 4.35 cm/yr,respectively.
Fund:[Co-funded by the National Natural Science Foundation of China(Nos. 41476031,41776052)and the National Technology Basic Investigation Project(No.2013FY112200)]
Corresponding Authors:
Fan Dai-Du,born in 1972,is a professor and Ph.D. advisor of sedimentology at Tongji University. E-mail: ddfan@tongji.edu.cn.
About author: Wang Xiao-Hui,born in 1993,is a master candidate at Tongji University and majors in marine geology. E-mail: xhWang_12@163.com.
Cite this article:
Wang Xiao-Hui,Wu Yi-Jing,Fan Dai-Du. 210Pb derived sedimentation rates in offshore area of the Xinghua Bay,Fujian Province, and proposed calibration method[J]. JOPC, 2019, 21(3): 527-536.
Wang Xiao-Hui,Wu Yi-Jing,Fan Dai-Du. 210Pb derived sedimentation rates in offshore area of the Xinghua Bay,Fujian Province, and proposed calibration method[J]. JOPC, 2019, 21(3): 527-536.
[1] 成艾颖,余俊清,张丽莎,高春亮. 2010. XRF岩心扫描分析方法及其在湖泊沉积研究中的应用. 盐湖研究, 18(2): 7-13. [Cheng A Y,Yu J Q,Zhang L S,Gao C L.2010. XRF core scanning and applications on lake sediments. Journal of Salt Lake Research, 18(2): 7-13] [2] 郭允谋,郑承忠,潘亚明. 1995. 台湾海峡的现代沉积环境. 见:台湾海峡及邻近海域海洋科学讨论会论文集. 北京: 海洋出版社,145-153. [Guo Y M,Zhen C Z,Pan Y M.1995. The modern sedimentary environment of the Taiwan Strait. In: A Proceedings of the Symposium on Marine Science in the Taiwan Strait and Its Neighboring Areas. Beijing: China Ocean Press,145-153] [3] 火苗,范代读,徐过冬. 2011. 长江三角洲南汇潮滩沉积速率及其影响因素. 古地理学报, 13(1): 111-118. [Huo M,Fan D D,Xu G D.2011. Sedimentation rates of Nanhui tidal flats in Changjiang River Delta and analysis of their influence factors. Journal of Palaeogeography(Chinese Edition), 13(1): 111-118] [4] 纪丽红,李超,刘广山. 2009. 兴化湾西岸潮间带沉积物岩心放射性核素分布与沉积速率. 海洋学研究, 27(3): 1-7. [Ji L H,Li C,Liu G S.2009. The distributions of radionuclides in a sediment core and sedimentary rate in the intertidal zone of Xinghuawan Bay. Journal of Marine Science, 27(3): 1-7] [5] 李冬梅,徐茂泉,刘广山,李超,许文彬. 2005. 福建兴化湾外近海沉积物岩心放射性核素分布. 地球学报,26(s1): 220-223. [Li D M,Xu M Q,Liu G S,Li C,Xu W B.2005. The distribution of radionuclides in sediment cores from offshore area of Xinghua Bay. Acta Geoscientica Sinica,26(s1): 220-223] [6] 刘广山,黄奕普,彭安国. 2002. 深海沉积物岩心锕放射系核素的γ谱测定. 台湾海峡, 21(1): 86-93. [Liu G S,Huang Y P,Peng A G.2002. Measurement of actinium series radionuclides in deep-sea sediment core using γ spectrometry. Journal of Oceanography in Taiwan Strait, 21(1): 86-93] [7] 沙文钰,吕新刚,陈希,张文静. 2001. 环台湾岛海域半日潮波特征的三维模拟. 海洋学报, 23(4): 31-40. [Sha W Y,Lü X G,Chen X,Zhang W J.2001. Numerical simulation of charcteristics of semidiurnal tidal waves in sea region around Taiwan. Acat Oceanologica Sinica, 23(4): 31-40] [8] 王敏杰,郑洪波,谢昕,范代读,杨守业,赵泉鸿,王可. 2010. 长江流域600年来古洪水: 水下三角洲沉积与历史记录对比. 科学通报, 55(34): 3320-3327. [Wang M J,Zheng H B,Xie X,Fan D D,Yang S Y,Zhao Q H,Wang K.2010. A 600-year flood history in the Yangze River drainage: Comparison between a subaqueous delta and historical records. Chinese Science Bulletin, 56(2): 188-195] [9] 夏小明,杨辉,李炎,李伯根,潘少明. 2004. 长江口—杭州湾毗连海区的现代沉积速率. 沉积学报, 22(1): 130-135. [Xia X M,Yang H,Li Y,Li B G,Pan S M.2004. Modern sedimentation rates in the contiguous sea area of changjiang estuary and hangzhou bay. Acta Sedimentologica Sinica, 22(1): 130-135] [10] Alonso-Hernandez C M,Diaz-Asencio M,Munoz-Caravaca A,Delfanti R,Papucci C,Ferretti O,Crovato C.2006. Recent changes in sedimentation regime in Cienfuegos Bay,Cuba,as inferred from 210Pb and 137Cs vertical profiles. Continental Shelf Research, 26(2): 153-167. [11] Andersen T J,Mikkelsen O A,Møller A L,Morten P.2000. Deposition and mixing depths on some European intertidal mudflats based on 210Pb and 137Cs activities. Continental Shelf Research, 20(12-13): 1569-1591. [12] Crozaz G,Picciotto E,De B W.1964. Antarctic Snow Chronology with 210Pb. Journal of Geophysical Research, 69(69): 2597-2604. [13] Dukat D A,Kuehl S A.1995. Non-steady-state 210Pb flux and the use of228Ra/226Ra as a geochronometer on the Amazon continental shelf. Marine Geology, 125(3): 329-350. [14] Dypvik H,Harris N B.2001. Geochemical facies analysis of fine-grained siliciclastics using Th/U,Zr/Rb and(Zr+Rb)/Sr ratios. Chemical Geology, 181(1): 131-146. [15] Foster I D L,Mighall T M,Proffitt H,Walling D E,Owens P N.2006. Post-depositional 137Cs Mobility in the Sediments of Three Shallow Coastal Lagoons,SW England. Journal of Paleolimnology, 35(4): 881-895. [16] Goldberg E D.1963. Geochronology with 210Pb. In: Radioactive Dating. Vienna: International Atomic Energy Agency, 121-131. [17] Huh C A,Su C C.1999. Sedimentation dynamics in the East China Sea elucidated from 210Pb,137Cs and239,240Pu. Marine Geology, 160(1): 183-196. [18] Huh C A,Chen W F,Hsu F H,Su C C,Chiu J K,Lin S,Liu C S,Huang B J.2011. Modern(<100 years)sedimentation in the Taiwan Strait: Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution. Continental Shelf Research, 31(1): 47-63. [19] Koide M,Soutar A,Goldberg E D.1972. Marine geochronology with 210Pb. Earth & Planetary Science Letters, 14(3): 442-446. [20] Kuehl S A,DeMaster D J,Nittrouer C A.1986. Nature of sediment accumulation on the Amazon continental shelf. Continental Shelf Research, 6(1): 209-225. [21] Last W M,Smol J P.2001. Tracking Environmental Change Using Lake Sediments,Volume 1: Basin Analysis,Coring,and Chronological Techniques. Kluwer Academic Publishers, 49(5): 171-196. [22] Lee S Y,Huh C A,Su C C,You C F.2004. Sedimentation in the Southern Okinawa Trough: Enhanced particle scavenging and teleconnection between the Equatorial Pacific and western Pacific margins. Deep Sea Research Part I Oceanographic Research Papers, 51(11): 1769-1780. [23] Ritchie J C,Mchenry J R.1990. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. Journal of Environmental Quality, 19(2): 215-233. [24] Sanchez-Cabeza J A,Ruiz-Fernández A C.2012. 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta, 82(82): 183-200. [25] Sommerfield C K,Nittrouer C A.1999. Modern accumulation rates and a sediment budget for the Eel shelf: A flood-dominated depositional environment. Marine Geology, 154(1): 227-241. [26] Wang J,Baskaran M,Niedermiller J.2017. Mobility of 137Cs in freshwater lakes: A mass balance and diffusion study of Lake St. Clair,Southeast Michigan,USA. Geochimica et Cosmochimica Acta, 218(1): 323-342.