Primary dolostones of the Meso-Neoproterozoic:Cases on typical platforms in China
Bao Zhi-Dong1,2, Ji Han-Cheng1,2, Liang Ting1,2, Wei Ming-Yang1, Shi Yan-Qing1,2, Li Zong-Feng1, Lu Kai1, Xiang Peng-Fei1, Zhang Hua1, Yan Rui1, Guo Yu-Xin1, Li Zhuo-Lun1, Wan Pu1, Yang Zhi-Bo1, Ma Xiao-Dong1, Liu Rui1, Liu Can-Xing1, Zhong Xu-lin1, Guo Xiao-Qi1, Cai Zhong-Xian3, Zhang Shui-Chang4
1 College of Geosciences, China University of Petroleum(Beijing),Beijing 102249,China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249, China; 3 School of Earth Resources, China University of Geosciences(Wuhan),Wuhan 430074,China; 4 PetroChina Research Institute of Petroleum Exploration & Development,Beijing 100083,China
Abstract Based on the exploration of dolostones in outcrops and drilling cores of the Wumishan Formation in the Mesoproterozoic Jixian System in the North China Basin, the Qigbulak Formation in the Neoproterozoic Sinian Series in the Tarim Basin, and the Dengying Formation in the Neoproterozoic Sinian Series in the Sichuan Basin of China, the Meso-Neoproterozoic dolostones show abnormally well-developed medium-thick layered to massive structures. These dolostones contain 86%-97% of dolomicrites, most of which are thick layered to massive. The secondary metasomatism of these dolostones is undeveloped, no matter whether they contain algae, fungi and other microorganisms or not. Sedimentary palaeogeography analyses show: (1) the dolostones in the Meso-Neoproterozoic nearly covered the entire basin, widely deposited in supra- to intertidal zones and open to limited platform environments; (2) Different types of the dolostones were controlled by pre-depositional basement geomorphology. Dolomicrites were mainly developed in depression areas, whereas grainy dolomicrites and domal stromatolitic dolomicrites were mainly developed in uplift areas. (3) Deep-water basins were developed in the carbonate platform, and the seismic profile shows that these basins in the platforms were formed by syngenetic deep faults in the Meso-Neoproterozoic. These faults also led to concentration of magnesium ions in seawater through hydrothermal fluid into carbonate platforms. Geochemical and ancient climate index of dolostones with different sedimentary structures show that their carbon and oxygen isotope ratios have no obvious differentiation, and the ratios are similar to that of the Meso-Neoproterozoic global seawaters, suggesting the fine crystalline dolostones have the same sedimentary origin as the dolomicrites. The fine crystalline dolostones might have resulted from authigenic recrystallization of dolomicrites, rather than secondary metasomatism. All the petrological, sedimentary environmental and geochemical data collectively suggest that the dolostones covered almost the entire Meso-Neoproterozoic typical platform areas of China are of typical primary sedimentary origin.
Fund:Co-funded by the National Key Research and Development Programs of China(Nos. 2017YFC0603104,2018YFC0604304),Sinopec Group Projects(Nos. 10500000-15-ZC0607-0002,10500000-18-ZC0607-0003),China Geological Survey Project(No. IHEGDD2018026)
About author: Bao Zhi-Dong,professor,born in 1964,graduated from University of Petroleum in 1993 with his doctoral degree. He is mainly engaged in researches on sedimentology,reservoir geology and hydrocarbon and geothermal accumulation and evaluation. E-mail: baozhd@cup.edu.cn.
Cite this article:
Bao Zhi-Dong,Ji Han-Cheng,Liang Ting et al. Primary dolostones of the Meso-Neoproterozoic:Cases on typical platforms in China[J]. JOPC, 2019, 21(6): 869-884.
Bao Zhi-Dong,Ji Han-Cheng,Liang Ting et al. Primary dolostones of the Meso-Neoproterozoic:Cases on typical platforms in China[J]. JOPC, 2019, 21(6): 869-884.
[1] 鲍志东,李儒峰,冯增昭. 1999. 鄂尔多斯盆地东西部奥陶系对比再研究. 地质论评, 45(4): 375-381. [Bao Z D,Li R F,Feng Z Z.1999. Stratigraphical division and correlation of the Ordovian in the Eastern and the western Ordos: A review. Geological Review, 45(4): 375-381] [2] 鲍志东,金之钧,孙龙德,王招明,王清华,张清海,时晓章,李伟,吴茂炳,顾乔元,武新民,张宏伟. 2006. 塔里木地区早古生代海平面波动特征: 来自地球化学及岩溶的证据. 地质学报, 80(3): 366-373. [Bao Z D,Jin Z J,Sun L D,Wang Z M,Wang Q H,Zhang Q H,Shi X Z,Li W,Wu M B,Gu Q Y,Wu X M,Zhang H W.2006. Sea-level fluctuation of Tarim Area in Early Paleozoic: Respondence from geochemistry and karst. Acta Geologica Sinica, 80(3): 366-373] [3] 鲍志东,齐跃春,金之钧,张先龙,胡广成,张清海,时晓章,李伟,杨帆,潘文庆,孙玉善. 2007. 海平面波动中的岩溶响应. 地质学报, 81(2): 205-211. [Bao Z D,Qi Y C,Jin Z J,Zhang X L,Hu G C,Zhang H Q,Shi X Z,Li W,Yang F,Pan W Q,Sun Y S.2007. Karst development respondence to sea-Level fluctuation. Acta Geologica Sinica, 81(2): 205-211] [4] 杜金虎,李相博,包洪平,徐旺林,王雅婷,黄军平,王宏波,完颜容,王菁. 2019. 鄂尔多斯盆地中新元古界—下古生界天然气成藏地质条件及勘探新领域. 石油勘探与开发, 46(5): 820-835. [Du J H,Li X B,Bao H P,Xu W L,Wang Y T,Huang J P,Wanyan R,Wang J.2019. Geological conditions of natural gas accumulation and new exploration areas in the Mesoproterozoic to Lower Paleozoic of Ordos Basin,NW China. Petroleum Exploration and Development, 46(5): 820-835] [5] 冯增昭(主编). 1992. 沉积岩石学(上、下册). 北京: 石油工业出版社,64-69. [Feng Z Z(ed). 1992. Sedimentary Petrology. Beijing: Petroleum Industry Press,64-69] [6] 金振奎,冯增昭. 1999. 滇东—川西下二叠统白云岩的形成机理: 玄武岩淋滤白云石化. 沉积学报, 17(3): 383-389. [Jin Z K,Feng Z Z.1999. Formation mechanism of Lower Permian dolomites from east Yunnan to west Sichuan: Basalt leached dolomization. Acta Sedimentologica Sinica, 17(3): 383-389] [7] 河北省地质矿产局. 1982. 河北省区域地质志. 北京: 地质出版社,96-99. [The Hebei Bureau of Geology and Mineral Resources. 1982. Regional Geological Records of Hebei Province. Beijing: Geological Publishing House,96-99] [8] 赫云兰,刘波,秦善. 2010. 白云石化机理与白云岩成因问题研究. 北京大学学报(自然科学版), 46(6): 1010-1020. [He Y L,Liu B,Qin S.2010. Dolomization mechanism and genesis of dolomites. Acta Scientiarum Naturalium Universitatis Pekinensis, 46(6): 1010-1020] [9] 黄思静. 2010. 碳酸盐岩的成岩作用. 北京: 地质出版社. [Huang S J.2010. Diagenesis of Carbonate Rocks. Beijing: Geological Publishing House] [10] 姜海健,陈强路,杨鑫,储呈林. 2017. 塔里木盆地新元古代裂谷盆地层序样式. 地质学报, 91(3): 588-604. [Jiang H J,Chen Q L,Yang X,Chu C L.2017. The style of sequence stratigraphy of Neoproterozoic rift basin in the Tarim Basin. Acta Geologica Sinica, 91(3): 588-604] [11] 旷红伟,柳永清,耿元生,白华青,彭楠,范正秀,夏晓旭,王玉冲,陈骁帅. 2019. 中国中新元古代重要沉积地质事件及其意义. 古地理学报, 21(1): 1-30. [Kuang H W,Liu Y Q,Geng Y S,Bai H Q,Peng N,Fan Z X,Xia X X,Wang Y C,Chen X S.2019. Important sedimentary geological events of the Meso-NeoProterozoic and their significance. Journal of Palaeogeography(Chinese Edition), 21(1): 1-30] [12] 钱一雄,尤东华,陈代钊,卿海若,何治亮,马玉春,田蜜,席斌斌. 2012. 塔东北库鲁克塔格中上寒武统白云岩岩石学、地球化学特征与成因探讨: 与加拿大西部盆地惠而浦(Whirlpool point)剖面对比. 岩石学报, 28(8): 2525-2541. [Qian Y X,You D H,Cheng D Z,Qing H R,He Z L,Ma Y C,Tian M,Xi B B.2012. Petrology,geochemical characteristics and genesis of the upper Middle Cambrian dolomite in Kuroktage,northeast Tarim: Comparison with Whirlpool point profile in western Canada basin. Acta Petrologica Sinica, 28(8): 2525-2541] [13] 任影,钟大康,高崇龙,杨雪琪,李海洋,杨强,刘云龙,王玉. 2016. 四川盆地东部下寒武统龙王庙组碳、氧同位素组成及古环境意义. 海相油气地质, 21(4): 11-20. [Ren Y,Zhong D K,Gao C L,Yang X Q,Li H Y,Yang Q,Liu Y L,Wang Y.2016. Carbon and oxygen isotope compositions and its paleoenvironment implication of Lower Cambrian Longwangmiao Formation in the east part of Sichuan Basin. Marine Origin Petroleum Geology, 21(4): 11-20] [14] 四川省地质矿产局. 1989. 四川省区域地质志. 北京: 地质出版社. [The Sichuan Bureau of Geology and Mineral Resources. 1989. Regional Geological Records of Sichuan Provience. Beijing: Geological Publishing House] [15] 王頔. 2017. 川中地区晚震旦世早寒武世构造—古地理演化及油气地质意义. 长江大学博士论文. [Wang D.2017. Tectonic Paleogeographic Evolution and Petroleum Geological Significance during Late Sinian-Early Cambrian in Central Sichuan Basin. Doctoral Dissertation of University of Yangtze] [16] 魏喜,祝永军,许红,赵国春,李玉喜. 2006. 西沙群岛新近纪白云岩形成条件的探讨: C、O同位素和流体包裹体证据. 岩石学报, 22(9): 2394-2404. [Wei X,Zhu Y J,Xu H,Zhao G C,Li Y X.2006. Discussion on Neogene dolostone forming condition in Xisha Islands: Evidences from isotope C and O and inclosures. Acta Petrologica Sinica, 22(9): 2394-2404] [17] 魏国齐,朱秋影,杨威,张春林,莫午零. 2019. 鄂尔多斯盆地寒武纪断裂特征及其对沉积储集层的控制. 石油勘探与开发, 46(5): 836-847. [Wei G Q,Zhu Q Y,Yang W,Zhang C L,Mo W L.2019. Cambrian faults and their control on the sedimentation and reservoirs in the Ordos Basin,NW China. Petroleum Exploration and Development, 46(5): 836-847] [18] 吴林,管树巍,杨海军,任荣,朱光有,靳久强,张春宇. 2017. 塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力. 石油学报, 38(4): 375-385. [Wu L,Guan S W,Yang H J,Ren R,Zhu G Y,Jin J Q,Zhang C Y.2017. The paleogeographic framework and hydrocarbon exploration potential of Neoproterozoic rift basin in northern Tarim Basin. Acta Petrolei Sinica, 38(4): 375-385] [19] 新疆维吾尔自治区地质矿产局. 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社. [The Xinjiang Uygur Autonomous Region Bureau of Geology and Mineral Resources. 1993. Regional Geological Records of Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House] [20] 张德民,鲍志东,潘文庆. 2014. 塔里木盆地肖尔布拉克剖面中寒武统蒸发台地白云岩储层特征及成因机理. 天然气地球科学, 25(4): 498-507. [Zhang D M,Bao Z D,Pan W Q.2014. The Middle Cambrian evaporate platform dolomite reservoirs characteristics and their genetic mechanism in Xiaoerbulake,Tarim Basin. Natural Gas Geoscience, 25(4): 498-507] [21] 赵澂林,许元恺,白光勇,赖先楷. 1977. 太行山中北段高于庄组—雾迷山组的沉积特征及其相分析. 华东石油学院学报, 3: 118-138. [Zhao C L,Xu Y K,Bai G Y,Lai X K.1977. Sedimentary characteristics and facies analysis of the Gaoyuzhuang Formation-Wumishan Formation in the north-central Taihang Mountains. Journal of East China Petroleum Institute, 3: 118-138] [22] 赵澂林,朱筱敏(主编). 2001. 沉积岩石学(第三版). 北京: 石油工业出版社,1-407. [Zhao C L,Zhu X M.2001. Seimentary Petrology(The Third Edition). Beijing: Petroleum Industry Press] [23] 朱井泉,张永生,于炳松,吴仕强,由雪莲,刘玲,何凯. 2013. 白云岩. 见: 冯增昭(主编). 中国沉积学(第二版). 北京: 石油工业出版社,266-331. [Zhu J Q,Zhang Y S,Yu B S,Wu S Q,You X L,Liu L,He K.2013. Dolomite. In: Feng Z Z(ed). Sedimentology of China(2nd edition). Beijing: Petroleum Industry Press,266-331] [24] 朱茂炎. 2016. 全球新元古代地层沉积地层现状.见: 孙枢,王铁冠(主编). 中国东部中—新元古界地质学与油气资源 . 北京: 科学出版社,3-24. [Zhu M Y.2016. Research Progress of Global Neoproterozoic Sedimentary Strata. In: Sun S,Wang T G(eds). Beijing: Science Press,3-24] [25] Anderson T F,Arthur M A.1983. Stable isotopes of oxygen and carbon and their application to sedimentological and paleoenvirmental problems. In: Arthur M A,Anderson T F,Kaplan I R,Veizer J,Land L S. eds. Stable Isotopes in Sedimentary Geology. Soc. Econ. Paleontol. Miner. Short Course, 10: 1-151. [26] Bao Z D.1998. Continental slope limestones of Lower and Middle Triassic,South China. Sedimentary Geology. 118(1-4): 77-93. [27] Bao Z D,Zhu J Q,Jiang M S,Xia Y.1998. Strontium isotope evolution: Responding with sea-level fluctuation: An example of Ordovician in Middle Tarim Area. Scientia Geologica Sinica, 7(3): 329-333. [28] Bao Z D.1999: Episodic Carbonate Deposits on Continental Slope,the Triassic,South China. Acta Geologica Sinica, 73(1): 93-103. [29] Bao Z D,Li R F,Pang X Q.1999. Genesis of the massive Ordovician dolostones in the Ordos basin,North China: Evidence from inclusions. Energy Exploration and Exploitation. 17(3-4): 259-267. [30] Bao Z D,Chen J F,Zhang S C.2004. Sedimentary Environment and Development Controls of the Hydrocarbon Source Beds: The Middle and Upper Proterozoic in Northern North China. Science in China,47(Ⅱ): 133-140. [31] Botz R W,Von Der Borch C C. 1984. Stable isotope study of carbonate sediments from the Coorong area,South Australia. Sedimentology, 31: 837-849. [32] de Dolomieu D G.1791. Sur un genre de pierres calcaires trés peu effervescentes avec les acides et phosphorescentes par la collision. Journal de Physique, 39: 3-10. [33] Epstein S,Buchsbaum R,Lowenstam H.1951. Carbonate-water isotopic temperature scale. Bulletin of the Geological Society of America, 62: 417-427. [34] Epstein S,Bushsbaum R,Lowenstam H A,Urey H C.1953. Revised carbonate-water isotopic temperature scale. Geological Society of America Bulletin, 64: 1315-1326. [35] Erez J,Luz B.1983. Experimental paleotemperature equation for planktonic foraminifera. Geochimica et Cosmochimica Acta, 47: 1025-1031. [36] Grotzinger J P,Knoll A H.2017. Anomalous carbonate precipitates: Is the Precambrian the key to the Permian?Palaios, 10: 578-596. [37] Horita J,Zimmermann H,Holland H D.2002. Chemical evolution of seawater during the Phanerozoic: Implications from the record of marine evaporites. Geochimica et Cosmochimica Acta, 66(21): 3733-3756. [38] Husson J M,Higgins J A,Maloof AC,Schoene B.2015. Ca and Mg isotope constraints on the origin of Earth’s deepest δ13C excursion. Geochimica et Cosmochimica Acta, 160: 243-266. [39] Hsü K J, Siegenthaler C.1969. Preliminary experiments on hydrodynamic movement induced by evaporation and their bearing on the dolomite problem. Sedimentology, 12(1-2): 11-25. [40] Kaufman A J,Xiao S H.2003. High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature, 425(18): 279-282. [41] Keith M L,Weber J N.1964. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochimica et Cosmochimica Acta, 28: 1787-1816. [42] Mountjoy E W,Halim-Dihardja M.1991. Multiple phase fracture and fault-controlled burial dolomitization,Upper Devonian Wabamun Group,Alberta. Journal of Sedimentary Petrology, 61(4): 590-612. [43] Pratt B R.2001. Oceanography,bathymetry and syndepositional tectonics of a Precambrian intracraton Basin: Integrating sediments,storms,earthquakes and tsunamics in the Belt Supergroup(1.45 Ga),western North America. Sedimentary Geology, 141-142: 371-394. [44] Shackleton N J.1974. Attainment of isotopic equilibrium between ocean water and the benthonic foraminitera genus Uvigerina: Isotopic changes in the ocean during the last glacial. Centre National de la Recherche Scientifique Colloques Internationaux, 219: 203-209. [45] Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69(6): 843-883. [46] Timofeeff M N,Lowenstein T K,Silva M A M D,Harris N B.2006. Secular variation in the major-ion chemistry of seawater: Evidence from fluid inclusions in Cretaceous halites. Geochimica et Cosmochimica Acta, 70(8): 1977-1994. [47] Turner E C.2009. Mesoproterozoic carbonate system in the Borden Basin,Nunavut. Can. J. Earth Sci. 46: 915-938. [48] Vasconcelos C,Mc Kenzie J A,Bernasconi S,Grujic D,Tien A J.1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220-222. [49] Von Der Borch C C. 1976. Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area,South Australia. Journal of Sedimentary Petrology, 46: 952-966. [50] Warren J.2000. Dolomite: Occurrence,evolution and economically important associations. Earth-Science Reviews, 52: 1-81. [51] White B.1981. Shallowing-upward cycles in the Middle Proterozoic Altyn Formation. Nature, 294(12): 157-158. [52] Wood R,Liu A G,Bowyer F,Wilby P R,Dunn F S,Kenchington C G,Cuthill J F H,Mitchell E G,Penny A.2019. Integrated records of environmental change and evolution challenge the Cambrian Explosion. Nature Ecology and Evolution, 3: 528-538. [53] Veizer J,Ala D,Azmy K,Bruckschen P,Buhl D,Bruhn F,Carden G A F,Diener A,Ebneth S,Godderis Y,Jasper T,Korte C,Pawellek F,Podlaha O G,Strauss H.1999. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161: 59-88. [54] Yang F,Bao Z D,Zhang D M,Jia X,Xiao J.2017. Carbonate secondary porosity development in a polyphase paleokarst from Precambrian system: Upper Sinian examples,North Tarim basin,northwest China. Carbonates and Evaporites. 32: 243-256. [55] Zenger D H, Dunham J B,Ethington R L.1980. Concepts and models of dolomitization. SEPM Special Publish, 28: 320.