Characteristics,main controlling factors and favorable area prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiong’an New Area
Lu Kai1,2, Bao Zhi-Dong1,2, Ji Han-Cheng1,2, Liu Jin-Xia3, Wang Gui-Ling4, Ma Feng4, Guo Rui-Jing1,2, Cao Ying-Zhuo1,2, Yang Fei5, Fu Yong1,2, Li Xiao-Bo1,2, Hua Ying-Xin1,2, Que Yi-Juan1,2, Li Zong-Feng1,2, Xu Xi-Ting1,2, Hu Xian-Cai4
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 3 Sinopec Star Petroleum Co. Ltd.,Beijing 100083,China; 4 Institute of Hydrogeology and Environmental Geology,Chinese Academy of Geological Sciences,Shijiazhuang 050061,China; 5 Exploration and Development Research Institute,Sinopec Zhongyuan Oilfield Company,Zhengzhou 450046,China
Abstract There are abundant geothermal resources in the Jixianian Wumishan Formation of Xiong’an New Area. To study the characteristics and main controlling factors of high-quality karstic geothermal reservoirs in the Wumishan Formation is the basis of the exploration of geothermal resources. The geological and geophysical data, including outcrops,cores,thin sections,drilling and logging,are utilized to study of the characteristics and evolution process of karstic geothermal reservoirs in the Wumishan Formation. The aim of this article is to clarify the controlling factors of formation and development of high-quality geothermal reservoirs,and to predict the favorable target areas. The results indicate that the main lithologies of the karstic geothermal reservoirs in the Wumishan Formation are grain dolomite,granular dolomite,microbial dolomite,siliceous dolomite and breccia dolomite. The main reservoir spaces are caves,vuggy pores and fractures. The average porosity of the geothermal reservoirs in the Wumishan Formation is 3.18%,and the average permeability is 91.48 ×10-3μm2 . Among them,the breccia has the best petrophysical properties. The karstic geothermal reservoirs of the Wumishan Formation mainly experienced five stages of evolution including sedimentation-penecontemporaneous pore formation(Jxw),epigenic karstic stage Ⅰ(after Jxw-before Qb),burial stage Ⅰ(before Qb-T),epigenic karstic stage Ⅱ(T-E)and burial stageII(N-Q).The lithologies and lithofacies,diagenesis and tectonic stress are the main controlling factors for the formation of favorable karstic geothermal reservoirs in the Wumishan Formation. The most potential areas of the karstic geothermal reservoirs in the study area are located at regions characterized as the algal dolomitic flat-dolomitic flat,the epigenic karst,the buried karst,the penecontemporaneous karst,the karst platform-slope and the thickness ratio between fractures and the Wumishan Formation larger than 0.4.
Fund:Financially supported by the National Key Research and Development Programs of China(Nos. 2018YFC0604304,2017YFC0603104)
Corresponding Authors:
Bao Zhi-Dong,professor,born in 1964,graduated from University of Petroleum in 1993 with his doctoral degree. He is mainly engaged in researches on sedimentology,reservoir geology and hydrocarbon and geothermal accumulation and evaluation. E-mail: baozhd@cup.edu.cn.
About author: Lu Kai,born in 1990,is a doctoral candidate of China University of Petroleum(Beijing). Now he is mainly engaged in research on carbonate sedimentation and reservoirs. E-mail: kailu_1234@163.com.
Cite this article:
Lu Kai,Bao Zhi-Dong,Ji Han-Cheng et al. Characteristics,main controlling factors and favorable area prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiong’an New Area[J]. JOPC, 2019, 21(6): 885-900.
Lu Kai,Bao Zhi-Dong,Ji Han-Cheng et al. Characteristics,main controlling factors and favorable area prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiong’an New Area[J]. JOPC, 2019, 21(6): 885-900.
[1] 鲍志东,金之钧,孙龙德,王招明,王清华,张清海,时晓章,李伟,吴茂炳,顾乔元,武新民,张宏伟. 2006. 塔里木地区早古生代海平面波动特征: 来自地球化学及岩溶的证据. 地质学报, 80(3): 366-373. [Bao Z D,Jin Z J,Sun L D,Wang Z M, Wang Q H,Zhang Q H,Shi X Z,Li W,Wu M B,Gu Q Y,Wu X M,Zhang H W.2006. Sea-Level fluctuation of the Tarim Area in the Early Paleozoic: Respondence from geochemistry and karst. Acta Geologica Sinica, 80(3): 366-373] [2] 陈墨香,黄歌山,张文仁,张容燕,刘炳义. 1982. 冀中牛驼镇凸起地温场的特点及地下热水的开发利用. 地质科学, 17(3): 239-252. [Chen M X,Huang G S,Zhang W R,Zhang R Y,Liu B Y.1982. The temperature distribution pattern and the utilization of geothermal water at Niutuozhen basement protrusion of central Hebei Province. Chinese Journal of Geology(Scientia Geologica Sinica), 17(3): 239-252] [3] 戴明刚,汪新伟,刘金侠,雷海飞,鲍志东. 2019. 雄安新区起步区及周边地热资源特征与影响因素. 地质科学, 54(1): 176-191. [Dai M G,Wang X W,Liu J X,Lei H F,Bao Z D.2019. Characteristics and influence factors of geothermal resources in the starting and adjacent zone of Xiong’an New Area. Chinese Journal of Geology, 54(1): 176-191] [4] 郭世炎,李小军. 2013. 河北保定容城凸起地热田储层属性与资源潜力. 地质科学, 48(3): 922-931. [Guo S Y,LI X J.2013. Reservoir stratum characterstics and geothermal resources potential of Rongcheng uplift geothermal field in Baoding, Hebei. Chinese Journal of Geology, 48(3): 922-931] [5] 何登发,单帅强,张煜颖,鲁人齐,张锐锋,崔永谦. 2018. 雄安新区的三维地质结构: 来自反射地震资料的约束. 中国科学: 地球科学, 48(9): 1207-1222. [He D F,Shan S Q,Zhang Y Y,Lu R Q,Zhang R F,Cui Y Q.2018.3-D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data. Science China: Earth Sciences, 61: 1007-1022] [6] 侯方浩,方少仙,沈昭国,董兆雄,蒋裕强. 2005. 白云岩体表生成岩裸露期古风化壳岩溶的规模. 海相油气地质,10(1): 19-30. [Hou F H,Fang S X,Shen Z G,Dong Z X,Jiang Y Q.2005. The scale of dolostone bodies palaeoweathering crust karsting hyperdiagenesis exposure phase. Marine Origin Petoleum Geology,10(1): 19-30] [7] 吉利明,陈践发,郑建京,王杰. 2001. 华北燕山地区中新元古代沉积记录及其古气候、古环境特征. 地球科学进展, 16(6): 777-784. [Ji L M,Chen J F,Zheng J J,Wang J.2001. Sedimental records and characteristics of palaeoclimate and palaeoenvironment in the Yanshan Area,North China in the Mesoproterozoic and the Neoproterozoic. Advance in Earth Sciences, 16(6): 777-784] [8] 季汉成,房超,华南,肖菁,李海泉,黎雪,李晨,马鹏鹏,毛翔. 2016. 鲁西豫东地区奥陶系顶部岩溶储集层特征及有利控制因素. 古地理学报, 18(4): 545-559. [Ji H C,Fang C,Hua N,Xiao J,Li H Q,Li X,Li C,Ma P P,Mao X.2016. Characteristics and favorable controlling factors of karst reservoirs within the uppermost part of Ordovician in western Shandong-eastern Henan area. Journal of Palaeogeography(Chinese Edition), 18(4): 545-559] [9] 贾秀梅. 1993. 华北平原深部岩溶和岩溶水. 见:中国地质科学院水文地质与工程地质研究所,中国地质学会. 中国地质科学院水文地质工程地质研究所文集(9). 北京:地质出版社, 118-129. [Jia X M.1993. Deep karst and karst water in North China Plain. In: Institute of Hydrogeology and Engineering Geology, Chinese Academy of Geological Sciences, Geological Society of China. Bulletin of the Institute of Hydrogeology and Engineering Geology, Chinese Academy of Geological Sciences(9). Beijing: Geological Publishing House, 118-129] [10] 金振奎,余宽宏. 2011. 白云岩储集层埋藏溶蚀作用特征及意义: 以塔里木盆地东部下古生界为例. 石油勘探与开发, 38(4): 428-434. [Jin Z K,Yu K H.2011. Characteristics and significance of the burial dissolution of dolomite reservoirs: Taking the Lower Palaeozoic in eastern Tarim Basin as an example. Petroleum Exploration and Development, 38(4): 428-434] [11] 倪新锋,张丽娟,沈安江,乔占峰,韩利军. 2010. 塔里木盆地英买力—哈拉哈塘地区奥陶系岩溶储集层成岩作用及孔隙演化. 古地理学报, 12(4): 467-479. [Ni X F,Zhang L J,Shen A J,Qiao Z F,Han L J.2010. Diagenesis and pore evolution of the Ordovician karst reservoir in Yengimahalla-Hanilcatam region of Tarim Basin. Journal of Palaeogeography(Chinese Edition), 12(4): 467-479] [12] 乔秀夫,马丽芳. 1982. 华北地台中、晚、新元古代的地壳运动. 见:中国地质科学院地质研究所,中国地质学会. 中国地质科学院地质研究所文集(4). 北京: 地质出版社, 1-14. [Qiao X F,Ma L F.1982. The crustal movement of the North China platform in the Middle Proterozoic,Late Proterozoic and Neoproterozoic Era. In: Institute of Geology, Chinese Academy of Geological sciences, Geological Society of China. Collected Works of Institute of Geology,Chinese Academy of Geological Science(4). Beijing: Geological Publishing House, 1-14] [13] 王贵玲,李郡,吴爱民,张薇,胡秋韵. 2018. 河北容城凸起区热储层新层系—高于庄组热储特征研究. 地球学报, 39(5): 533-541. [Wang G L,Li J,Wu A M,Zhang W,Hu Q Y.2018. A Study of the thermal storage characteristics of Gaoyuzhuang Formation: A new layer system of thermal reservoir in Rongcheng uplift area, Hebei Province. Acta Geoscientica Sinica, 39(5): 533-541] [14] 王贵玲,张薇,蔺文静,刘峰,朱喜,刘彦广,李郡. 2017. 京津冀地区地热资源成藏模式与潜力研究. 中国地质, 44(6): 1074-1085. [Wang G L,Zhang W,Lin W J,Liu F,Zhu X,Liu Y G,Li J.2017. Research on formation mode and development potential of geothermal resources in Beijing-Tianjin-Hebei region. Geology in China, 44(6): 1074-1085] [15] 吴爱民,马峰,王贵玲,刘金侠,胡秋韵,苗青壮. 2018. 雄安新区深部岩溶热储探测与高产能地热井参数研究. 地球学报, 39(5): 523-532. [Wu A M,Ma F,Wang G L,Liu J X,Hu Q Y,Miao Q Z.2018. A Study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong’an New Area. Acta Geoscientica Sinica, 39(5): 523-532] [16] 吴孔友,王雨洁,张瑾琳,臧明峰. 2010. 冀中坳陷前第三系岩溶发育规律及其控制因素. 海相油气地质, 15(4): 14-22. [Wu K Y,Wang Y J,Zhang J L,Zang M F.2010. Development rule and controlling factors of Pre-Tertiary karst in Jizhong Depression,Bohaiwan Basin. Marine Origin Petroleum Geology, 15(4): 14-22] [17] 阎敦实,于英太. 2000. 京津冀油区地热资源评价与利用. 武汉: 中国地质大学出版社, 1-179. [Yan D S,Yu Y T.2000. Geothermal Resources Assessment and Utilization of Beijing,Tianjing and Hebei Province. Wuhan: China University of Geosciences Press,1-179] [18] 杨飞,鲍志东,潘文庆,刘金侠,张德民,肖菁. 2017. 塔里木盆地柯坪上震旦统奇格布拉克组优质储层形成机理. 石油科学通报, 2(1): 12-23. [Yang F,Bao Z D,Pan W Q,Liu J X,Zhang D M,Xiao J.2017. The formation mechanism of high quality reservoirs in the Qigebulake Formation,Upper Sinian,Tarim Basin. Petroleum Science Bulletin, 2(1): 12-23] [19] 杨明慧,刘池洋,孙冬胜,崔永谦. 2002. 冀中坳陷的伸展构造系统及其构造背景. 大地构造与成矿学,26(2): 113-120. [Yang M H,Liu C Y,Sun D S,Cui Y Q.2002. Extensional tectonic system and its deep-seated setting of JiZhong Basin,China. Geotectonica Et Metallogenia,26(2): 113-120] [20] 张庆玉,秦凤蕊,梁彬,淡永,李景瑞,陈利新. 2017. 塔北哈拉哈塘地区奥陶系碳酸盐岩古地貌及岩溶储层发育特征. 地质科技情报, 36(1): 168-175. [Zhang Q Y,Qin F R,Liang B,Dan Y,Li J R,Chen L X.2017. Paleogeomorphology and karst reservoir development of Ordovician carbonate in Halahatang Area,Northern Tarim Basin. Geological Science and Technology Information, 36(1): 168-175] [21] 张以明,常健,刘念,刘井旺,马学峰,赵淑芳,沈芳宇,周阳. 2017. 冀中坳陷霸县地区现今温压场及其与地热资源的关系. 天然气工业, 37(10): 118-126. [Zhang Y M,Chang J,Liu N,Liu J W,Ma X F,Zhao S F,Shen F Y,Zhou Y.2017. Present-day temperature-pressure field and its implications for the geothermal resources development in the Baxian area,Jizhong Depression of the Bohai Bay Basin. Natural Gas Industry, 37(10): 118-126] [22] 周瑞良. 1987. 华北平原北部深层地下水活动及其对地温场的影响. 中国地质科学院562综合大队集刊,(6): 17-35. [Zhou R L.1987. The activity of deep underground water in the northern part of the North China plain and its effect on the geothermal field. Bulletin of the 562 Comprehensive Geological Brigade Chinese Academy of Geological Sciences,(6): 17-35] [23] 朱姜炜. 2016. 冀中坳陷典型潜山裂缝发育规律研究. 中国石油大学(北京)硕士学位论文,13-14. [Zhu J W.2016. The Study on Fracture Development Rule of the Typical Buried-hills in the Jizhong Depression. Master’s Thesis of China University of Petroleum(Beijing),13-14] [24] 邹胜章,夏日元,刘莉,唐建生,梁彬. 2016. 塔河油田奥陶系岩溶储层垂向带发育特征及其识别标准. 地质学报, 90(9): 2490-2501. [Zou S Z,Xia R Y,Liu L,Tang J S,Liang B.2016. Vertial zone characteristics and identification standard of Ordovician karst reservoirs in the Tahe Oilfield. Acta Geologica Sinica, 90(9): 2490-2501] [25] Enos P,Sawatsky L H.1981. Pore networks in Holocene carbonate sediments. Journal of Sedimentary Petrology, 51(3): 961-985. [26] Moore P J.2009. Controls on the Generation of Secondary Porosity in Eogenetic Karst: Examples from San Salvador Island,Bahamas and Northcentral Florida,USA. Doctoral Dissertation of University of Florida, 100-653. [27] Pope M,Read J F.1998. Ordovician metre-scale cycles: Implications for climate and eustatic fluctuations in the central Appalachians during a global greenhouse,non-glacial to glacial transition.Palaeogeography,Palaeoclimatology,Palaeoecology,138(1-4):27-42. [28] Wright V P.1991. Palaeokarsts and Palaeokarstic Reservoirs. Univ. Reading, 56-88. [29] Yang F,Bao Z D,Zhang H A,Peng J,Wang X J,Guo D B,Liu W,Xiao J,Zhang Y L.2019. Polyphase palaeokarst development in complex tectonic regimes: A case from Mesoproterozoic Wumishan Formation in Jizhong Depression,North China. Carbonates and Evaporites,34(3):857-868.