Abstract Studied on well cores of the 5th Member of Ordovician Majiagou Formation in the Ordos Basin,it reveals that the microbialites in the 2nd layer of $Ma^{4}_{5}$,the 2nd layer of $Ma^{2}_{5}$,the 4th layer of $Ma^{1}_{5}$ can be divided into three distinct types: wormlike thrombolite,bacterial netlike thormbolite and chamber-patches thrombolite. By comparing with formation conditions of the modern microbial carbonate in the hypersaline lakes in the Republic of Kiribati,it is inferred that (1)the studied thrombolites formed in hypersaline lakes with salinity of 60‰~149‰ as the relative sea level rose,and(2) the gypsum-bearing carbonates formed in the hypersaline lakes with salinity of above 149‰. The wormlike thrombolites have high contents of intercrystaline pores and dissolution pores,and the netlike and chamber-patches thrombolites have high contents of relict pores, which makes thrombolites as an important exploration target.
Corresponding Authors:
Jiang Hong-Xia,born in 1976,research assistant,is a supervisor of master degree candidate of paleontology and stratigraphy. Her researches focus on carbonate paleontology,reefs and microbialites,paleoecology and chemostratigraphy. E-mail: jianghx@hgu.edu.cn.
About author: Qiao Ya-Bin,born in 1975,senior engineer of gas field development,chief geologist of Gas Production Plant 5 of PetroChina Changqing Oilfield Company. He works on gas field development technical management. E-mail: qyb_cq@petroChina.com.cn.
Cite this article:
Qiao Ya-Bin,Zhang Lin,Wang Yu et al. Thrombolite types and seawater palaeosalinity of the 5th Member of Middle Ordovician Majiagou Formation in Sulige Gas Field,Ordos Basin[J]. JOPC, 2020, 22(1): 97-110.
Qiao Ya-Bin,Zhang Lin,Wang Yu et al. Thrombolite types and seawater palaeosalinity of the 5th Member of Middle Ordovician Majiagou Formation in Sulige Gas Field,Ordos Basin[J]. JOPC, 2020, 22(1): 97-110.
[1] 冯增昭,鲍志东. 1999. 鄂尔多斯奥陶纪马家沟期岩相古地理. 沉积学报, 17(1): 1-8. [Feng Z Z,Bao Z D.1999. Lithofacies paleogeography of Majiagou age of Ordovician in Ordos Basin. Acta Sedimentologica Sinica, 17(1): 1-8] [2] 冯增昭,彭勇民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,19. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D. 2004. Lithofacies Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,19] [3] 高飞, 王念喜, 乔向阳, 刘鹏. 2019. 基于古盐度、古水温的白云岩成岩环境分析: 以鄂尔多斯盆地东南部延长探区马五1亚段为例. 非常规油气,6(5): 47-53. [Gao F, Wang N X, Qiao X Y, Liu P.2019. Dolomite diagenetic environments analysis based on ancient salinity and ancient water temperature: A case study of M51 sub-members of Majiagou Formation in Yanchang area of southeast Ordos Basin. Unconventional oil & Gas, 6(5): 47-53] [4] 贡云云. 2016. 鲁西寒武系张夏组凝块石类型及其微孔隙的成因研究. 中国矿业,25(Z1): 386-389. [Gong Y Y.2016. The type of thrombolite and research on the original of micropores in the thrombolite for Cambrian Zhangxia Formation in the western of Shandong Province. China Mining Magzine,25(Z1): 386-389] [5] 何江,方少仙,侯方浩,杨西燕. 2009. 鄂尔多斯盆地中部气田中奥陶统马家沟组岩溶型储层特征. 石油与天然气地质, 30(3): 350-356. [He J,Fang S X,Hou F H,Yang X Y.2009. Characteristics of karst reservoirs in the Middle Ordovician Majiagou Formation of gas fields in the central Ordos Basin. Oil & Gas Geology, 30(3): 350-356] [6] 蒋一鸣, 邵龙义, 李帅, 赵洪, 康世龙, 沈文超, 易琦. 2020. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究. 现代地质, DOI: 10.19657/j.geoscience.1000-8527.2020.002. [Jiang Y M, Shao L Y, Li S, Zhao H, Kang S L, Shen W C, Yi Q.2020. Deposition system and stratigraphy of Pinghu Formation in Pinghu tectonic belt, Xihu Sag. Geoscience, Doi: 10.19657/j.Geoscience.1000-8527.2020.002] [7] 刘丽静,杨芝林,吴亚生. 2011. 新疆塔里木盆地塔中地区上奥陶统良里塔格组钙化蓝细菌化石. 古生物学报, 50(4): 492-510. [Liu L J,Yang Z L,Wu Y S.2011. Calcified Cynobacteria from the Upper Ordovician Lianglitage Formation,central Tarim Basin,Xinjiang. Acta Palaeontologica Sinica, 50(4): 492-510] [8] 罗平,王石,李朋威,宋金民,金廷福,王果谦,杨式升. 2013. 微生物碳酸盐岩油气储层研究现状与展望. 沉积学报, 31(5): 807-823. [Luo P,Wang S,Li P W,Song J M,Jin T F,Wang G T,Yang S S.Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica, 31(5): 807-823] [9] 邵东波,包洪平,魏柳斌,蔡郑红,武春英,周黎霞,曹岩刚. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征. 古地理学报, 21(4): 537-556. [Shao D B,Bao H P,Wei L B,Cai Z H,Wu C Y,Zhou L X,Cao Y G.2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. Journal of Palaeogeography(Chinese Edition), 21(4): 537-556] [10] 沈扬,吴兴宁,王少依,吴东旭,丁振纯,于洲. 2018. 鄂尔多斯盆地东部奥陶系风化壳岩溶储层孔隙充填特征. 海相油气地质, 23(3): 21-32. [Shen Y,Wu X N,Wang S Y,Wu D X,Ding Z C,Yu Z.2018. Pore-filling characteristics of Ordovician karst reservoirs in eastern Ordos Basin. Marine Origin Petroleum Geology, 23(3): 21-32] [11] 史基安,邵毅,张顺存,付翠琴,白海峰,马占龙,吴志雄. 2009. 鄂尔多斯盆地东部地区奥陶系马家沟组沉积环境与岩相古地理研究. 天然气地球科学, 20(3): 316-324. [Shi J A,Shao Y,Zhang S C,Fu C Q,Bai H F,Ma Z L,Wu Z X.2009. Lithofacies paleogeography and sedimentary environment in Ordovician Majiagou Formation,eastern Ordos Basin. Natural Gas Geoscience, 20(3): 316-324] [12] 孙玉景,周立发. 2018. 鄂尔多斯盆地马五段膏盐岩沉积对天然气成藏的影响. 岩性油气藏, 30(6): 67-75. [Sun Y J,Zhou L F.2018. Influences of gypsum-salt deposition on gas accumulation of the fifth member of Majiagou Formation in Ordos Basin. Lithologic Reservoirs, 30(6): 67-75] [13] 王国亭,程立华,孟德伟,朱玉杰,孙建伟,黄锦袖,彭艳霞. 2018. 鄂尔多斯盆地东部奥陶系古岩溶型碳酸盐岩致密储层特征、形成机理与天然气富集潜力. 石油与天然气地质, 39(4): 685-696. [Wang G T,Cheng L H,Meng D W,Zhu Y W,Sun J W,Huang J X,Peng Y X.2018. Characterization and formation of the Ordovician tight paleokarst carbonates in the eastern Ordos Basin and its gas accumulation. Oil & Gas Geology, 39(4): 685-696] [14] 王玉伟,陈红汉,曹自成,云露. 2019. 塔里木盆地塔中北坡奥陶系微生物碳酸盐岩储层形成机制与评价. 地球科学, 44(2): 559-571. [Wang Y W,Chen H H,Cao Z C,Yun L.2019. Forming mechanism of Ordovician microbial carbonate reservoir in northern slope of Tazhong uplift,Tarim Basin. Earth Science, 44(2): 559-571] [15] 王志浩,甄勇毅,张元动,吴荣昌. 2016. 中国华北不同相区奥陶纪牙形刺生物地层的再认识. 地层学杂志, 40(1): 1-16. [Wang Z H,Zhen Y Y,Zhang Y D,Wu R C.2016. Review of the Ordovician Condont biostratigraphy in the different facies of north China. Journal of Stratigraphy, 40(1): 1-16] [16] 卫民. 1999. 生物标志的环境含义及其应用. 岩相古地理, 19(1): 1-30. [Wei M.1999. The environmental implications and application of biological indications. Sedimentary Facies and Palaeogeoraphy, 19(1): 1-30] [17] 吴亚生,姜红霞,虞功亮,刘丽静. 2018. 微生物岩的概念和重庆老龙洞剖面P-T 界线地层微生物岩成因. 古地理学报, 20(5): 737-776. [Wu Y S,Jiang H X,Yu G L,Liu L J.2018. Conceptions of microbialites and origin of the Permian-Triassic boundary microbialites from Laolongdong,Chongqing,China. Journal of Palaeogeography(Chinese Edition), 20(5): 737-776] [18] 肖传桃,肖云鹏,宋振宇,黄云飞,董曼. 2018. 湖北松滋地区下奥陶统生物扰动型凝块石的发现及其成因探讨. 天然气地球科学, 29(8): 1078-1084. [Xiao C T,Xiao Y P,Song Z Y,Huang Y F,Dong M.2018. Discovery of bioturbated thrombolites in the Lower Ordovician of Songzi area,Hubei Province. Natural Gas Geoscience, 29(8): 1078-1084] [19] 余家仁,雷怀玉,刘趁花. 1998. 海相碳酸盐岩储层发育的影响因素:以任丘油田雾迷山组为例. 海相油气地质, 3(1): 39-48. [Yu J R,Lei H Y,Liu C H.1998. A discussion of factors influencing marine carbonate rock reservoir development: A case study of Wumishan Formation of Renqiu Oilfield. Marine Origin Petroleum Geology, 3(1): 39-48] [20] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwest Alberta. Journal of Sedimentary Petrology,37: 1163-1178. [21] Feldmann M,McKenzie J A.1998. Stormatolite-thrombolite associations in a modern environment,Lee Stocking Island,Bahamas. Palaios, 13: 201-212. [22] Arp G,Helms G,Karlinska K,Schumann G,Reimer A,Reitner J,Trichet J.2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the Atoll of Kiritimati,Republic of Kiribati,central Pacific. Geomicrobiology Journal, 29(1): 29-65. [23] Mancini E A,Llinás J C,Parcell W C,Aurell M,Bádenas B,Leinfelder R R,Benson D J.2004. Upper Jurassic thrombolite reservoir play,northeastern Gulf of Mexico. AAPG, 88(11): 1573-1602. [24] Meng F W,Zhang Z L,Yan X Q,Ni P,Liu W H,Fan F,Xie G W.2017. Stromatolites in Middle Ordovician carbonate-evaporite sequences and their carbon and sulfur isotopes stratigraphy,Ordos Basin,northwestern China. Carbonates Evaporites,DOI 10.1007/s13146-017-0367-0. [25] Riding R. 1991. Classification of microbial carbonates. In: Calcareous Algae and Stromatolites. Berlin: Springer-Verlag,21-51. [26] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(Supplement.1): 179-214.