Key signatures of turbidite and sandy debris and core examples in Liaohe Basin
Yang Ke1,2, Zhu Xiao-Min1,2, Liu Yu1,2, Liu Xing-Zhou3, Guo Feng3
1 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 PetroChina Liaohe Oilfield Company,Liaoning Panjin 124010, China
Abstract Gravity flow is a widely-distributed fluid type in nature. Various classification schemes of gravity flow are proposed by different researchers from different viewpoints. The scheme of turbidity flow and debris flow is adopted in this paper. The sedimentary characteristics of turbidite and sandy debrite are summarized and discussed to clarify most typical facies marks of these two rock types. The study shows that turbidite and sandy debris can be identified by the following typical characteristics during the outcrop and core observation: If the graded bedding is developed in sandstone,it should be identified as turbidite;if the muddy rip-up clast or no bedding structure(massive sandstone)is developed in sandstone,it should be identified as sandy debris. These characteristics are the most reliable signatures to distinguish turbidite and sandy debris. In addition,some other sedimentary structures such as deformation bedding,climbing ripple cross bedding,wavy bedding,parallel bedding,scouring surface,lithologic abrupt interface,and flute cast also have certain indicative significance. It is necessary to make a comprehensive judgment based on the sedimentary background,vertical combination of lithofacies,geophysics and other materials when these characteristics are presented in the study.
Fund:Co-funded by the National Science and Technology Major Projects (No. 2017ZX05001-002-002), and the National Natural Science Foundation of China(No. 41202078)
Corresponding Authors:
Zhu Xiao-Min,born in 1960,is a professor and doctoral supervisor of College of Geoscience,China University of Petroleum(Beijing). He is mainly engaged in sedimentology and sequence stratigraphy. E-mail: xmzhu@cup.edu.cn.
About author: About the first author Yang Ke,born in 1993,is a Ph.D. candidate in China University of Petroleum(Beijing),majoring in sedimentology and palaeogeography. E-mail: 1448019312@qq.com.
Cite this article:
Yang Ke,Zhu Xiao-Min,Liu Yu et al. Key signatures of turbidite and sandy debris and core examples in Liaohe Basin[J]. JOPC, 2020, 22(3): 483-492.
Yang Ke,Zhu Xiao-Min,Liu Yu et al. Key signatures of turbidite and sandy debris and core examples in Liaohe Basin[J]. JOPC, 2020, 22(3): 483-492.
[1] 付金华,郭正权,邓秀芹. 2005. 鄂尔多斯盆地西南地区上三叠统延长组沉积相及石油地质意义. 古地理学报, 7(1): 34-44. [Fu J H,Guo Z Q,Deng X Q.2005. Sedimentary facies of the Yanchang Formation of Upper Triassic and petroleum geological implication in southwestern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 7(1): 34-44] [2] 付锁堂,邓秀芹,庞锦莲. 2010. 晚三叠世鄂尔多斯盆地湖盆沉积中心厚层砂体特征及形成机制分析. 沉积学报, 28(6): 1081-1089. [Fu S T,Deng X Q,Pang J L.2010. Characteristics and mechanism of thick sandbody of Yanchang Formation at the centre of Ordos Basin. Acta Sedimentologica Sinica, 28(6): 1081-1089] [3] 金杰华,操应长,王健,杨田,周磊. 2019. 深水砂质碎屑流沉积: 概念、沉积过程与沉积特征. 地质论评, 65(3): 689-702. [Jin J H,Cao Y C,Wang J,Yang T,Zhou L.2019. Deep-water sandy debris flow deposits concepts,sedimentary processes and characteristics. Geological Review, 65(3): 689-702] [4] 李存磊,任伟伟,唐明明. 2012. 流体性质转换机制在重力流沉积体系分析中应用初探. 地质论评, 58(2): 285-296. [Li C L,Ren W W,Tang M M.2012. Preliminary study on gravity flow depositional system based on fluid properties conversion theory. Geological Review, 58(2): 285-296] [5] 李相博,卫平生,刘化清,王菁. 2013. 浅谈沉积物重力流分类与深水沉积模式. 地质论评, 59(4): 607-614. [Li X B,Wei P S,Liu H Q,Wang J.2013. Discussion on the classification of sediment gravity flow and the deep-water sedimentary model. Geological Review, 59(4): 607-614] [6] 李相博,刘化清,潘树新,王菁. 2019. 湖相沉积物重力流研究的过去、现在与未来. 沉积学报, 37(5): 904-921. [Li X B,Liu H Q,Pan S X,Wang J.2019. The past,present and future of research on deep-water sedimentary gravity flow in lake basins of China. Acta Sedimentologica Sinica, 37(5): 904-921] [7] 李云,郑荣才,朱国金,胡晓庆. 2011. 沉积物重力流研究进展综述. 地球科学进展, 26(2): 157-165. [Li Y,Zheng R C,Zhu G J,Hu X Q.2011. Reviews on sediment gravity flow. Advances in Earth Science, 26(2): 157-165] [8] 廖纪佳,朱筱敏,邓秀芹,孙勃,惠潇. 2013. 鄂尔多斯盆地陇东地区延长组重力流沉积特征及其模式. 地学前缘, 20(2): 29-39. [Liao J J,Zhu X M,Deng X Q,Su B,Hui X.2013. Sedimentary characteristics and model of gravity flow deposition in Triassic Yanchang Formation of Longdong Area in Ordos Basin. Earth Science Frontiers, 20(2): 29-39] [9] Posamentier H W,Kolla V,刘化清. 2019. 深水浊流沉积综述. 沉积学报, 37(5): 879-903. [Posamentier H W,Kolla V,Liu H Q.2019. An overview of deep-water turbidite deposition. Acta Sedimentologica Sinica, 37(5): 879-903] [10] 孙靖,薛晶晶,厚刚福,吴爱成,宋明星,朱峰. 2019. 湖盆凹陷区砂质碎屑流沉积特征与模式: 以准噶尔盆地盆1井西凹陷侏罗系三工河组为例. 中国矿业大学学报, 48(4): 858-869. [Sun J,Xue J J,Hou G F,Wu A C,Song M X,Zhu F.2019. Sedimentary characteristic and model of sandy debris flow in depression area of lacustrine basin: A case of study of Jurassic Sangonghe Formation in the western well Pen-1 sag,Junggar basin. Journal of China University of Mining & Technology, 48(4): 858-869] [11] 谈明轩,朱筱敏,耿名扬,刘常妮. 2016. 沉积物重力流流体转化沉积—混合事件层. 沉积学报, 34(6): 1108-1119. [Tan M X,Zhu X M,Geng M Y,Liu C N.2016. The flow transforming deposits of sedimentary gravity flow-hybrid event bed. Acta Sedimentologica Sinica, 34(6): 1108-1119] [12] 王德坪. 1991. 湖相内成碎屑流的沉积及形成机理. 地质学报,(4): 299-316, 387-388. [Wang D P.1991. The sedimentation and formation mechanism lacustrine endogenic debris flow. Acta Geologica Sinica,(4): 299-316, 387-388] [13] 鲜本忠,万锦峰,姜在兴,张建国,李振鹏,佘源琦. 2012. 断陷湖盆洼陷带重力流沉积特征与模式: 以南堡凹陷东部东营组为例. 地学前缘, 19(1): 121-135. [Xian B Z,Wan J F,Jiang Z X,Zhang J G,Li Z P,She Y Q.2012. Sedimentary characteristics and model of gravity flow deposition in the depressed belt of rift lacustrine basin: A case of study from Dongying Formation in Nanpu Depression. Earth Science Frontiers, 19(1): 121-135] [14] 鲜本忠,安思奇,施文华. 2014. 水下碎屑流沉积: 深水沉积研究热点与进展. 地质论评, 60(1): 39-51. [Xian B Z,An S Q,Shi W H.2014. Subaqueous debris flow: Hotspots and advances of deep-water sedimention. Geological Review, 60(1): 39-51] [15] 鲜本忠,王璐,刘建平,路智勇,李宇志,牛栓文,朱永飞,洪方浩. 2016. 东营凹陷东部始新世三角洲供给型重力流沉积特征与模式. 中国石油大学学报(自然科学版), 40(5): 10-21. [Xian B Z,Wang L,Liu J P,Lu Z Y,Li Y Z,Niu S W,Zhu Y F,Hong F H.2016. Sedimentary characteristics and model of delta-fed turbidites in Eocene eastern Dongying Depression. Journal of China University of Petroleum(Edition of Natural Sciences), 40(5): 10-21] [16] 余杰. 1983. 块状砂岩的X射线照像分析及其形成机制的探讨. 石油实验地质, 5(3): 208-213, 241. [Yu J.1983. X-Ray Radiography analysis of massive sandstone and a discussion on their genetic mechanism. Experimental Petroleum Geology, 5(3): 208-213,41] [17] 张兴阳,罗顺社,何幼斌. 2001. 沉积物重力流—深水牵引流沉积组合: 鲍马序列多解性探讨. 江汉石油学院学报, 23(1): 1-4,6. [Zhang X Y,Luo S S,He Y B.2001. Deposit assemblage of gravity flow and traction current in deep water: A study of the multiple interpretation of the bouma sequence. Journal of Jianghan Petroleum Institute, 23(1): 1-4,6] [18] 朱筱敏. 2008. 沉积岩石学(第四版). 北京: 石油工业出版社,379. [Zhu X M. 2008. Sedimentology(4th). Beijing: Petroleum Industry Press,379] [19] 邹才能,赵政璋,杨华,付金华,朱如凯,袁选俊,王岚. 2009. 湖盆深水砂质碎屑流成因机制与分布特征: 以鄂尔多斯盆地为例. 沉积学报, 27(6): 1065-1075. [Zou C N,Zhao Z Z,Yang H,Fu J H,Zhu R K,Yuan X J,Wang L.2009. Genetic mechanism and distribution of sandy debris flows in terrestrial lacustrine basin. Acta Sedimentologica Sinica, 27(6): 1065-1075] [20] Bouma A H.1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Amsterdam: Elsevier,1-168. [21] Bouma A H,Devries M B,Stone C G.1997. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma: Discussion. AAPG Bulletin, 81(3): 470-472. [22] Brooks H L,Hodgson D M,Brunt R L,Peakall J,Hofstra M,Flint S S.2018. Deep-water channel-lobe transition zone dynamics: Processes and depositional architecture,an example from the Karoo Basin,South Africa. Geological Society of America, 130: 1723-1746. [23] Cartigny M J B,Postma G,Wagoner Den Berg J H,Mastbergen D R.2011. A comparative study of sediment waves and cyclic steps based on geometries,internal structures and numerical modeling. Marine Geology, 280: 40-56. [24] Dasgupta P.2003. Sediment gravity flow-the conceptual problems. Earth Science Reviews,62(3/4): 265-281. [25] Fildani A,Normark W R.2004. Late Quaternary evolution of channel and lobe complexes of Monterey Fan. Marine Geology, 206: 199-223. [26] Hampton M A.1972. The role of subaqueous debris flow in generating turbidity currents. Journal of Sedimentary Petrology, 42(4): 775-793. [27] Haughton P,Davis C,Mc C W,Barker S.2009. Hybrid sediment gravity flow deposits Classification,origin and significance. Marine and Petroleum Geology, 26: 1900-1918. [28] Li X B,Yang Z L,Wang J,Liu H Q,Chen Q L,Wan Y R,Liao J B,Li Z Y.2016. Mud-coated intraclasts: A criterion for recognizing sandy mass-transport deposits—deep-lacustrine massive sandstone of the Upper Triassic Yanchang Formation,Ordos Basin,Central China. Journal of Asian Earth Sciences, 129: 98-116. [29] Mulder T,Alexander J.2001. The physical character of subaqueous sedimentary density flows and their deposits. Sedimentology, 48(2): 269-299. [30] Mutti E,Normark W R. 1987. Comparing examples of modern and ancient turbidite systems: Problems and concepts. In: Leggett J K,Zuffa G G(eds). Marine Clastic Sedimentology,Concepts and Case Studies. Oxford,UK: Graham & Trotman,1-38. [31] Mutti E,Normark W R. 1991. An integrated approach to the study of turbidite systems, In: Weimer P,Link M H(eds). Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems. Springer-Verlag,75-106. [32] Normark.1978. Fan valleys,channels,and depositional lobes on modern submarine fans: Characters for recognition of sandy turbidite environments. AAPG Bulletin, 62: 912-931. [33] Shanmugam G.1996. High-density turbidity currents: Are they sandy debris flows? Journal of Sedimentary Research, 66(1): 2-10. [34] Shanmugam G,Moiola R J.1997. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma: Reply. AAPG Bulletin, 81(3): 476-491. [35] Shanmugam G.2000. Deep-water processes and facies model: A critical perspective. Marine and Petroleum Geology, 17(2): 285-342. [36] Symons W O,Sumner E J,Talling P J,Cartigny M J, Clare M A.2016. Large-scale sediment waves and scours on the modern seafloor and their implications for the prevalence of supercritical flows. Marine Geology, 371: 130-148. [37] Talling P J,Amy I A,Wynn R B,Peakall J,Robinson M.2004. Beds comprising debrite sandwiched within cogenetic turbidite: Origin and widespread occurrence in distal depositional environments. Sedimentology, 51: 163-194. [38] Walker R G.1978. Deep-water sandstone facies and ancient submarine fans-models for exploration for stratigraphic traps. AAPG Bulletin, 62: 932-966. [39] Wynn R B,Kenyon N H,Masson D G,Stow D A,Weaver P P.2002a. Characterization and recognition of deep-water channel-lobe transition zones. AAPG Bulletin, 86: 1441-1446. [40] Wynn R B,Piper D J W, Gee M J R.2002b. Generation and migration of coarse-grained sediment waves in turbidity current channels and channel-lobe transition zones. Marine Geology, 192: 59-78.