Characteristics and genesis of iron formation in the Changlongshan Formation of Qingbaikou System in the Ming Tombs area,Beijing
Zhang Qin1,2, Wang Bo-Han3, Zhou Chen1, Sun Zu-Yu1, Mei Xiao-Han4, Yuan Cheng-Shuai5, Wang Kai1
1 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249, China; 2 State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249, China; 3 Jianghan Production Plant of Sinopec Jianghan Oilfield Company,Hubei Qianjiang 433123, China; 4 School of Energy Resources,China University of Geosciences(Beijing),Beijing 100083,China; 5 Institute of Earth Science,China University of Geosciences(Beijing),Beijing 100083,China
Abstract Iron formation is widely distributed through the entire Precambrian geological record,however,there is no report on the outcropped Precambrian iron formation in the Changlongshan Formation of the Qingbaikou System in North China. Based on field investigation,XRD,SEM,ICP-MS and other methods,the distribution and mineral composition of iron formation and the source of ore-forming materials outcropped in the Ming Tombs area were studied in this paper to investigate the genesis of iron formation. The study showed that the main component of iron formation was hematite,which was associated with quartz,glauconite and other minerals. The iron formation of the Changlongshan Formation was divided into two types. Type I is associated with glauconite with relatively smaller thickness,and it is characterized by bands of glauconite sandstone interbeded with iron sandstone and near-spherical hematite microscopically. Type II is not accompanied by glauconite with relatively larger thickness,and it is represented by black iron-rich layers intercalated with quartz lens and acicular or snowflake hematite under the microscope. Tectonic evolution and trace element analysis showed that the iron source was mainly derived from the irony weathering crust at the top of the Xiamaling Formation. The type I iron formation is a mixture of chemical colloid and glauconite weathering,and the type II iron formation is mainly formed by colloidal chemical deposition and could undergo mylonitization in the later stage. The research results provide a sedimentary geological basis for distribution and prospecting of the Precambrian iron formation in North China,and it is also of great significance for enriching the metallogenic mechanism of the iron formation and revealing the tectonic evolution of Proterozoic of North China.
Fund:Financially supported by the National Natural Science Foundation of China(No.41872134)
About author: About the first author Zhang Qin,born in 1973,is an associate professor and graduate supervisor. She is mainly engaged in sedimentology,sequence stratigraphy and reservoir geology. E-mail: zhangqin@cup.edu.cn.
Cite this article:
Zhang Qin,Wang Bo-Han,Zhou Chen et al. Characteristics and genesis of iron formation in the Changlongshan Formation of Qingbaikou System in the Ming Tombs area,Beijing[J]. JOPC, 2020, 22(3): 570-586.
Zhang Qin,Wang Bo-Han,Zhou Chen et al. Characteristics and genesis of iron formation in the Changlongshan Formation of Qingbaikou System in the Ming Tombs area,Beijing[J]. JOPC, 2020, 22(3): 570-586.
[1] 鲍亦刚,刘振锋,王世发. 2001. 北京西山百年地质研究. 北京: 地质出版社. [Bao Y G,Liu Z F,Wang S F. 2001. Geological Study of Xishan in Beijing. Beijing: Geological Publishing House] [2] 陈秉麟. 1981. 对河北唐山赵各庄地区长龙山组与下伏地层接触关系的研究. 大庆石油学院学报, 9(1): 23-36,129. [Chen B L.1981. Study on the contact relationship between Changlongshan Formation and underlying strata in Zhaogezhuang area,Tangshan,Hebei. Journal of Daqing Petroleum Institute, 9(1): 23-36,129] [3] 陈小军,罗顺社,李家华. 2011. 宣龙坳陷青白口系长龙山组碎屑岩地球化学特征. 中国地质, 38(6): 1477-1478. [Chen X J,Luo S S,Li J H.2011. Clastic rock geochemical features of Changlongshan Formation in Qingbaikou System within Xuanlong Depression. Geology in China, 38(6): 1477-1478] [4] 代堰锫,张连昌,王长乐,刘利,崔敏利,朱明田,相鹏. 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景. 岩石学报, 28(11): 3574-3594. [Dai Y P,Zhang L C,Wang C L,Liu L,Cui M L,Zhu M T,Xiang P.2012. Genetic type formation age and tectonic setting of the Waitoushan banded iron formation,Benxi,Liaoning Province. Acta Petrologica Sinica, 28(11): 3574-3594] [5] 范文博. 2015. 华北克拉通中元古代下马岭组地质特征及研究进展: 下马岭组研究百年回眸. 地质论评, 61(6): 1383-1406. [Fan W B.2015. Geological features and research progress of the Mesoproterozoic Xiamaling Formation in the North China Craton: A review after nearly one hundred years of study. Geological Review, 61(6): 1383-1406] [6] 付顺,田景春,王峰,何明喜. 2011. 南华北盆地青白口系岩相古地理特征及油气地质条件. 大庆石油学院学报, 35(3): 34-38. [Fu S Y,Tian J C,Wang F,He M X.2011. Southern Huabei basin's lithofacies-paleogeographic features and oil-gas geological condition. Journal of Daqing Petroleum Institute, 35(3): 34-38] [7] 高林志,张传恒,史晓颖,周洪瑞,王自强. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报, 26(3): 249-255. [Gao L Z,Zhang C H,Shi X Y,Zhou H R,Wang Z Q.2007. Zircon Shrimp U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikou System in the North China. Geological Bulletin of China, 26(3): 249-255] [8] 高林志,张传恒,史晓颖,宋彪,王自强,刘耀明. 2008. 华北古陆下马岭组归属中元古界的锆石SHRIMP年龄新证据. 科学通报, 53(21): 2617-2623. [Gao L Z,Zhang C H,Shi X Y,Song B,Wang Z Q,Liu Y M.2008. New evidence of age of Zircon SHRIMP of Xiamaling Formation of ancient land of North China belongs to Middle Proterozoic. China Science Bulletin, 53(21): 2617-2623] [9] 高林志,丁孝忠,曹茜,张传恒. 2010. 中国晚前寒武纪年表和年代地层序列. 中国地质, 37(4): 1014-1020. [Gao L Z,Ding X Z,Cao Q,Zhang C H.2010. New geological times scale of the Late Precambrian in China and geochronology. Geology in China, 37(4): 1014-1020] [10] 郭芪恒,金振奎,朱小二,李硕,史书婷,王俊杰,程逸凡. 2019. 燕山地区京西坳陷青白口地区新元古界沉积相演化. 古地理学报, 21(3): 422-430. [Guo Q H,Jin Z K,Zhu X E,Li S,Shi S T,Wang J J,Cheng Y F.2019. Sedimentary facies evolution of the Neoproterozoic in Qingbaikou area of Jingxi Depression,Yanshan region. Journal of Palaeogeography(Chinese Edition), 21(3): 422-430] [11] 胡国辉,赵太平,周艳艳,王世炎. 2013. 华北克拉通南缘中—新元古代沉积地层对比研究及其地质意义. 岩石学报, 29(7): 2491-2507. [Hu G H,Zhao T P,Zhou Y Y,Wang S Y.2013. Meso-Neo-Proterozoic sedimentary formation in the southern margin of the North China Craton and its geological implications. Acta Petrologica Sinica, 29(7): 2491-2507] [12] 姜兆霞,刘青松. 2016. 赤铁矿的定量化及其气候意义. 第四纪研究, 36(3): 676-689. [Jiang Z X,Liu Q S.2016. Quantification of hematite and its climatic significances. Quaternary Sciences, 36(3): 676-689] [13] 蒋少涌,丁悌平,万德芳,李延河. 1992. 辽宁弓长岭太古代条带状硅铁建造(BIF)的硅同位素组成特征. 中国科学(B辑), 22(6): 626-631. [Jiang S Y,Ding T P,Wang D F,Li Y H.1993. Silicon isotopic compositions of Archean banded Si-Fe formation(BIF)in the Gongchangling ore deposit,Liaoning Province,China. Science in China(Series B), 22(6): 626-631] [14] 李碧乐,霍亮,李永胜. 2007. 条带状铁建造(BIFS)研究的几个问题. 矿物学报, 27(2): 205-210. [Li B L,Huo L,Li Y S.2007. Several problems in the study of banded iron formations(BIFs). Acta Mineralogica Sinica, 27(2): 205-210] [15] 李怀坤,朱士兴,相振群,苏文博,陆松年. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S N.2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140] [16] 李延河,侯可军,万德芳,张增杰,乐国良. 2010. 前寒武纪条带状硅铁建造的形成机制与地球早期的大气和海洋. 地质学报, 84(9): 1359-1373. [Li Y H,Hou K J,Wan D F,Zhang Z J,Yue G L.2010. Formation mechanism of Precambrian banded iron formation and atmosphere and ocean during early stage of the earth. Acta Geologica Sinica, 84(9): 1359-1373] [17] 李延河,张增杰,伍家善,尚龙平. 2011. 冀东马兰庄条带状硅铁建造的变质时代及地质意义. 矿床地质, 30(4): 645-653. [Li Y H,Zhang Z J,Wu J S,Shang L P.2011. Metamorphic chronology of the BIF in Malanzhuang of eastern Hebei Province and its geological implications. Mineral Deposits, 30(4): 645-653] [18] 李志红,朱祥坤,唐索寒. 2008. 鞍山—本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示. 岩石矿物学杂志, 27(4): 285-290. [Li Z H,Zhu X K,Tang S H.2008. Characters of Fe isotopes and rare earth elements of banded iron formations from Anshan-Benxi area: Implications for Fe source. Acta Petrologica et Mineralogica, 27(4): 285-290] [19] 李志红,朱祥坤,孙剑. 2014. 江西新余铁矿的地球化学特征及其与华北BIFs铁矿的对比. 岩石学报, 30(5): 1279-1291. [Li Z H,Zhu X K,Sun J.2014. Geochemical characters of Banded Iron Formations from Xinyu and North China. Acta Petrologica Sinica, 30(5): 1279-1291] [20] 梁瑞,张秀云,赵军,李秀花. 2013. “宣龙式”铁矿地质特征及其成因分析. 华北国土资源, 52(1): 135-140. [Liang R,Zhang X Y,Zhao J,Li X H.2013. Geological characteristics and genesis analysis of “Xuanlong type” iron ore. Huabei Land and Resources, 52(1): 135-140] [21] 刘静兰. 1987. 前寒武纪条带状含铁建造中的金矿床: 以东风山金矿床为例. 地质学报,(1): 58-72. [Liu J L.1987. Gold deposits in Precambrian banded iron-bearing Formations: A case study of the DongFengShan gold deposit in Heilongjiang Province. Acta Geologica Sinica,(1): 58-72] [22] 刘利,张连昌,代堰锫. 2014. BIF成因研究进展. 地质科学, 49(3): 1018-1033. [Liu L,Zhang L C,Dai Y P.2014. Research progress on the genesis of BIF. Chinese Journal of Geology, 49(3): 1018-1033] [23] 刘清俊,柯柏林,林海亮,林天懿,尹腾宇,石岩. 2014. 北京地区中元古界下马岭组页岩气形成条. 地质科技情报, 33(2): 92-97. [Liu Q J,Ke B L,Lin H L,Lin T Y,Yin T Y,Shi Y.2014. Forming conditions and characteristics of the shale gas within the Mesoproterozoic Xiamaling Formation,Beijing area. Geological Science and Technology Information, 33(2): 92-97] [24] 梅朝佳. 2018. 叠层石中的海绿石化和黄铁矿化: 以天津蓟县中元古界铁岭组为例. 古地理学报, 20(3): 453-464. [Mei C J.2018. Glauconitization and pyritization of stromatolites: A case of the Mesoproterozoic Tieling Formation at Jixian section,Tianjin,North China. Journal of Palaeogeography(Chinese Edition), 20(3): 453-464] [25] 梅冥相,孟庆芬,刘智荣. 2007. 微生物形成的原生沉积构造研究进展综述. 古地理学报, 9(4): 353-367. [Mei M X,Meng Q F,Liu Z R.2007. Overview of advances in studies of primary sedimentary structures formed by microbes. Journal of Palaeogeography(Chinese Edition), 9(4): 353-367] [26] 潘建国,曲永强,马瑞,潘中奎,王海龙. 2013. 华北地块北缘中新元古界沉积构造演化. 高校地质学报, 19(1): 109-122. [Pan J G,Qu Y Q,Ma R,Pan Z K,Wang H L.2013. Sedimentary and tectonic evolution of the Meso-Neoproterozoic strata in the northern margin of the North China Block. Geological Journal of China Universities, 19(1): 109-122] [27] 乔秀夫,高林志. 1999. 华北中新元古代及早古生代地震灾变事件及与Rodinia的关系. 科学通报, 44(16): 1753-1758. [Qiao X F,Gao L Z.1999. The Early Paleozoic earthquake disaster events in the Middle Neoproterozoic of North China and their relationship with “Rodinia”. Chinese Science Bulletin, 44(16): 1753-1758] [28] 乔秀夫,高林志,张传恒. 2007. 中朝板块中、新元古界年代地层柱与构造环境新思考. 地质通报, 26(5): 503-509. [Qiao X F,Gao L Z,Zhang C H.2007. New idea of the Meso- and Neoproterozoic chronostratigraphic chart and tectonic environment in Sino-Korean Plate. Geological Bulletin of China, 26(5): 503-509] [29] 曲永强,潘建国,梁利东,杨祖峰,王海龙. 2012. 燕辽裂陷槽中元古界不整合面性质. 沉积与特提斯地质, 32(2): 12-13. [Qu Y Q,Pan J G,Liang L D,Yang Z F,Wang H L.2012. The attributes of the Mesoproterozoic unconformities in the Yanliao rift trough. Sedimentary Geology and Tethyan Geology, 32(2): 12-13] [30] 申宝剑,仰云峰,腾格尔,秦建中,潘安阳. 2016. 四川盆地焦石坝构造区页岩有机质特征及其成烃能力探讨: 以焦页1井五峰—龙马溪组为例. 石油实验地质, 38(4): 480-488,495. [Shen B J,Yang Y F,Tenger,Qin J Z,Pan A Y.2016. Characteristics and hydrocarbon significance of organic matter in shale from the Jiaoshiba structure,Sichuan Basin: A case study of the Wufeng-Longmaxi Formations in well Jiaoye1. Petroleum Geology Experiment, 38(4): 480-488,495] [31] 沈宝丰,翟安民,杨春亮. 2010. 古元古代:中国重要的成矿期. 地质调查与研究, 33(4): 241-308. [Shen B F,Zhai A M,Yang C L.2010. Paleoproterozoic:An important metallogenic epoch in China. Geological Survey and Research, 33(4): 241-308] [32] 宋天锐. 2007. 北京十三陵地区中元古界长城系沉积相标志及沉积环境模式. 古地理学报, 9(5): 461-472. [Song T R.2007. Sedimentary facies indicators and sedimentary environments models of the Changcheng System of Mesoproterozoic in Ming Tombs District,Beijing. Journal of Palaeogeography(Chinese Edition), 9(5): 461-472] [33] 孙省利,陈践发,刘文汇,张水昌,王大锐. 2003. 海底热水活动与海相富有机质层形成的关系: 以华北新元古界青白口系下马岭组为例. 地质论评, 49(6): 588-595. [Sun X L,Chen J F,Liu W H,Zhang S C,Wang D R.2003. Hydrothermal venting on the sea-floor and formation of organic-rich sediments: Evidence from the Neoproterozoic Xiamaling Formation,North China. Geological Review, 49(6): 588-595] [34] 汤冬杰,史晓颖,刘娟,王新强,裴云鹏. 2009. 华北地台串岭沟组砂脉中自生碳酸盐沉淀和自生黄铁矿: 中元古代甲烷厌氧氧化的沉积证据. 古地理学报, 11(4): 361-374. [Tang D J,Shi X Y,Liu J,Wang X Q,Pei Y P.2009. Redox status of the Mesoproterozoic epeiric sea in North China. Journal of Palaeogeography(Chinese Edition), 11(4): 361-374] [35] 汤冬杰,史晓颖,裴云鹏,蒋干清,赵贵生. 2011. 华北中元古代陆表海氧化还原条件. 古地理学报, 13(5): 563-580. [Tang D J,Shi X Y,Pei Y P,Jiang G Q,Zhao G S.2011. Redox status of the Mesoproterozoic epeiric sea in North China. Journal of Palaeogeography(Chinese Edition), 13(5): 563-580] [36] 王杰,陈践发. 2001. 华北中上元古界烃源岩沉积环境及生烃潜力研究. 天然气地球科学, 12(3): 27-33. [Wang J,Chen J F.2001. Sedimentary environment and hydrocarbon generation potential of source rocks of Middle-Upper Proterozoic in North China. Natural Gas Geoscience, 12(3): 27-33] [37] 王立峰,李文宣,罗均林,胡华斌. 2000. 河北省怀来新元古代长龙山组沉积相研究. 世界地质, 19(2): 138-143. [Wang L F,Li W X,Luo J L,Hu H B.2000. The study on sedimentary facies of the Neoproterozoic Changlongshan Formation in Huailai,Hebei. Global Geology, 19(2): 138-143] [38] 王铁冠. 1980. 燕山地区震旦亚界油苗的原生性及其石油地质意义. 石油勘探与开发, 7(2): 34-52. [Wang T G.1980. The originality of oil-bearing seedings of Sinian subgroup in Yanshan area and its significance in petroleum geology. Petroleum Exploration and Development, 7(2): 34-52] [39] 温献德. 1997. 华北北部中、上元古界的大陆裂谷模式和地层划分. 前寒武纪研究进展, 20(3): 21-28. [Wen X D.1997. The faild rift model and stratigraphic division of Middle-Upper Proterozoic stratum in the northern part of North China. Progress in Precambrian Research, 20(3): 21-28] [40] 徐述腾. 2015. 柳江盆地新元古界长龙山组沉积特征分析. 中山大学研究生学刊(自然科学与医学版), 36(3): 56-64. [Xu S T.2015. Liujiang basin Neoproterozoic sedimentary characteristics,sedimentary facies and palaeocurrent. Joural of the Graduates Sun Yat-Sen University(Natural Science,Medicine), 36(3): 56-64] [41] 姚春彦,董永观,张晓勇,曾勇,郭维民. 2012. 浅谈巴西Carajās地区前寒武纪条带状含铁建造的成矿作用. 地球科学进展,27(增刊): 281-285. [Yao C Y,Dong Y G,Zhang X Y,Zeng Y,Guo W M.2012. Briefly discussion on the metallogenesis of the Carajas Precambrian BIF,Brazil. Advances in Earth Science,27(Supplement): 281-285] [42] 姚仲友,王天刚,汪建宁. 2012. 与前寒武纪含铁建造有关的铁矿床基本特征及研究进展. 资源调查与环境, 33(4): 261-267. [Yao Z Y,Wang T G,Wang J N.2012. Characteristics and research progress of iron deposits related to Precambrian iron-bearing formation. Resources Survey & Environment, 33(4): 261-267] [43] 余志庆,王伦. 1989. 江西省主要银矿的地质特征,成矿条件及找矿初析. 江西地质, 3(2): 112-122. [Yu Z Q,Wang L.1989. Geological characteristics,metallogenic conditions and prospecting of main silver deposits in Jiangxi Province. Jiangxi Geology, 3(2): 112-122] [44] 翟明国,胡波,彭澎,赵太平. 2010. 华北中—新元古代的岩浆作用与多期裂谷事件. 地学前缘, 21(1): 100-119. [Zhai M G, Hu B, Peng P, Zhao T P.2012. Meso-Neoproterzoic magmatic events and multi-stage rifting in the NCC. Earth Science Frontiers, 21(1): 100-119] [45] 翟裕生,王建平. 2011. 矿床学研究的历史观. 地质学报, 85(5): 603-611. [Zhai Y S,Wang J P.2011. A historical view of mineral deposit research. Acta Geologica Sinica, 85(5): 603-611] [46] 张长根,熊继辉. 1979. 燕山西段震旦亚界油气生成问题探讨. 华东石油学院学报,(1): 88-102,140-144. [Zhang C G,Xiong J H.1979. Discussion on the formation of oil and gas in the sub-border of the Sinosaurs in western of Yanshan. Journal of East China Petroleum Institute,(1): 88-102,140-144] [47] 张连昌,翟明国,万渝生,郭敬辉,代堰锫,王长乐,刘利. 2012. 华北克拉通前寒武纪BIF铁矿研究: 进展及问题. 岩石学报, 28(11): 3431-3445. [Zhang L C,Zhai M G,Wan Y S,Guo J H,Dai Y P,Wang C L,Liu L.2012. Study of Precambrian BIF-iron deposits in the North China Craton: Progress and questions. Acta petrologica Sinica, 28(11): 3431-3445] [48] 张巧大. 2002. 北京十三陵地区中—新元古界碳酸盐岩Pb-Pb年龄研究. 地质论评, 48(4): 416-423. [Zhang Q D.2002. Pb-Pb Age determination of Meso- to Neoproterozoic carbonates in the Ming Tombs District,Beijing. Geological Reviews, 48(4): 416-423] [49] 仲佳鑫,李欢,李鹏,王辉,孙涛. 2012. 宁夏中卫香山地区铁矿床地质特征及成因探讨. 宁夏工程技术, 11(2): 101-106. [Zhong J X,Li H,Li P,Wang H,Sun T.Discussion on geological characteristics and genesis of the iron deposits in Xiangshan area,Zhongwei,Ningxia. Ningxia Engineering Technology,11(2): 101-106] [50] 钟焱,赵亮东,陈留勤,梅冥相. 2011. 对华北中元古代海侵初期“河流相”沉积的重新认识: 以天津蓟县剖面为例. 古地理学报, 13(1): 21-29. [Zhong Y,Zhao L D,Chen L Q,Mei M X.2011. Recognition of “fluvial facies”deposition of the early transgression period of Mesoproterozoic: An example from Jixian section in Tianjin. Journal of Palaeogeography(Chinese Edition), 13(1): 21-29] [51] 周洪瑞,梅冥相,罗志清,邢矿. 2006. 燕山地区新元古界青白口系沉积层序与地层格架研究. 地学前缘, 13(6): 280-290. [Zhou H R,Mei M X,Luo Z Q,Xing K.2006. Sedimentary sequence and stratigraphic framework of the Neoproterozoic Qingbaikou system in the Yanshan region,North China. Earth Science Frontiers, 13(6): 280-290] [52] 周俊鹏. 2019. 本溪地区鞍山式铁矿含铁建造显微构造变形机制. 地质学刊, 43(2): 222-228. [Zhou J P.2019. Microstructural deformation mechanism of iron-bearing formations in the Anshan-type iron mine of the Benxi area. Journal of Geology, 43(2): 222-228] [53] 朱士兴,刘欢,胡军. 2012. 论燕山地区青白口系的解体. 地质调查与研究, 35(2): 81-95. [Zhu S X,Liu H,Hu J.2012. On the disintegration of the Neoproterozoic Qingbaikouan System in Yanshan Range,North China. Geological Survey and Research, 35(2): 81-95] [54] Alibert C,Mcculloch M.1993. Rare-earth element and neodymium isotopic compositions of the banded iron-formations and associated shales from Hamersley,Western-Australia. Geochimica et Cosmochimica Acta, 57(1): 187-204. [55] Beatriz R L,James K C.2012. Morphological and chemical evidence of stromatolitic deposits in the 2.75 Ga Caraja's banded iron formation,Brazil. Earth and Planetary Science Letters,355-356: 60-72. [56] Bekker A,Slack J F,Planavsky N,Krapez B,Hofmann A,Konhauser K O,Rouxel O J.2010. Iron formation: The sedimentary product of a complex interplay among mantle,tectonic,oceanic,and biospheric process. Economic Geology, 105(3): 467-508. [57] Benjamin M T,Timothy K,Andrew J L,Peter S,William E.2020. Experimental evaluation of the role of redox during glauconite-CO2-brine interactions. Applied Geochemistry, 115(1): 1-9. [58] Beukes N J,Klein C.1990. Geochemistry and sedimentology of a facies transition—from microbanded to granular iron-formation—in the early Proterozoic Transvaal Supergroup,South Africa. Precambrian Research, 47(1): 99-139. [59] Bhatia M R.1983. Plate tectonics and geochemical composition of sandstones. The Journal of Geology, 91(6): 611-627. [60] Bhatia M R,Crook K A W.1986. Trace element characteristics of graywacks and tectonic setting discrimination of sedimentary basin. Contributions to Mineralogy and Petrology, 92(2): 181-193. [61] Bischoff J L. 1969. Red sea geothermal brine deposits: Their mineralogy chemistry,and genesis. In: Degens E T,Ross D(eds). Hot Brines and Recent Heavy-Metal Deposits in the Red Sea. Berlin: Springer, 368-401. [62] Chukhrov F V.1974. Some problems of origin of deposits in volcanogenic sequences. International Geology Review, 16(12): 1394-1405. [63] Condie K.1991. Geochemistry of metasediments from the Precambrian Hapschan Series,eastern Anabar Shield,Siberia. Precambrian Research, 50(1-2): 37-47. [64] Floyd P A,Leveridge B E.1987. Tectonic environment of the Devonian Gramscatho Basin,South Cornwall: Framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society, 144(4): 531-542. [65] Gross G A.1980. A classification of iron-formation based on depositional environments. Canadian Mineralogist, 18: 215-222. [66] Gu X X, Liu J M, Zheng M H, Tang J X, Qi L.2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical evidence. Journal of the Sedimentary Research, 72(3): 393-407. [67] Klein C.1973. Changes in mineral assemblages with metamorphism of some banded Precambrian iron-formations. Economic Geology, 68(7): 1075-1088. [68] Klein C.2005. Some Precambrian banded iron-formations(BIFs)from around the world: Their age,geologic setting, mineralogy, metamorphism, geochemistry and origins. American Mineralogist, 90(10): 1473-1499. [69] Lepp H,Goldich S S.1964. Origin of Precambrian iron formations. Economic Geology, 59: 1025-1060. [70] Lottermoser B G,Ashley P M.2000. Geochemistry,petrology and origin of Neoproterozoic ironstones in the eastern part of the Adelaide Geosyncline,South Australia. Precambrian Research, 101(1): 49-67. [71] McLennan S,Scott M.1993. Weathering and global denudation. Journal of Geology, 101(2): 295-303. [72] Pestitschek B,Gier S,Essa M,Kurzweil H.2012. Effects of weathering on glauconite: Evidence from the Abutartur plateau,Egypt. Clays and Clay Minerals, 60(1): 76-88. [73] Trendall A F.2002. The significance of iron-formation in the Precambrian stratigraphic record. International Association of Seduentologists Special, 33: 33-66.