1 Siegel RL,Miller KD,Jemal A.Cancer statistics,2020[J].CA Cancer J Clin,2020,70(1):7-30. 2 Bade BC,Dela Cruz CS.Lung cancer 2020:epidemiology,etiology,and prevention[J].Clin Chest Med,2020,41(1):1-24. 3 Castiglioni I,Gallivanone F,Soda P,et al.AI-based applications in hybrid imaging:how to build smart and truly multi-parametric decision models for radiomics[J].Eur J Nucl Med Mol Imaging,2019,46(13):2673-2699. 4 李双双,侯震,刘娟,等.影像组学分析与建模工具综述[J].中国医学物理学杂志,2018,35(9):1043-1049. 5 Ma J,Qian W,Ren Y,et al.Automatic lung nodule classification with radiomics approach[C].SPIE Medical Imaging.Medical Imaging 2016:PACS and Imaging Informatics:Next Generation and Innovations,2016. 6 Traverso A,Wee L,Dekker A,et al.Repeatability and reproducibility of radiomic features:A Systematic Review[J].Int J Radiat Oncol Biol Phys,2018,102(4):1143-1158. 7 Hassani C,Varghese BA,Nieva J,et al.Radiomics in pulmonary lesion imaging[J].AJR Am J Roentgenol,2019,212(3):497-504. 8 Zhang T,Yuan M,Zhong Y,et al.Differentiation of focal organising pneumonia and peripheral adenocarcinoma in solid lung lesions using thin-section CT-based radiomics[J].Clin Radiol,2019,74(1):23-78. 9 Beig N,Khorrami M,Alilou M,et al.Perinodular and intranodular radiomic features on lung ct images distinguish adenocarcinomas from granulomas[J].Radiology,2019,290(3):783-792. 10 Balagurunathan Y,Schabath MB,Wang H,et al.Quantitative imaging features improve discrimination of malignancy in pulmonary nodules[J].Sci Rep,2019,9(1):8528. 11 Petkovska I,Shah SK,Mcnitt-Gray MF,et al.Pulmonary nodule characterization:a comparison of conventional with quantitative and visual semi-quantitative analyses using contrast enhancement maps[J].Eur J Radiol,2006,59(2):244-252. 12 Chen C,Chang C,Tu C,et al.Radiomic features analysis in computed tomography images of lung nodule classification[J].PLoS One,2018,13(2):e192002. 13 Zhang L,Chen B,Liu X,et al.Quantitative biomarkers for prediction of epidermal growth factor receptor mutation in non-small cell lung cancer[J].Transl Oncol,2018,11(1):94-101. 14 Liu Y,Kim J,Balagurunathan Y,et al.Radiomic features are associated with egfr mutation status in lung adenocarcinomas[J].Clin Lung Cancer,2016,17(5):441-448. 15 Tu W,Sun G,Fan L,et al.Radiomics signature:a potential and incremental predictor for EGFR mutation status in NSCLC patients,comparison with CT morphology[J].Lung Cancer,2019,132:28-35. 16 Li S,Ding C,Zhang H,et al.Radiomics for the prediction of EGFR mutation subtypes in non‐small cell lung cancer[J].Med Phys,2019,46(10):4545-4552. 17 Li H,Zhang R,Wang S,et al.CT-Based radiomic signature as a prognostic factor in stage IV ALK-positive non-small-cell lung cancer treated with TKI crizotinib:a proof-of-concept study[J].Front Oncol,2020,10:57. 18 Song L,Zhu Z,Mao L,et al.Clinical,conventional ct and radiomic feature-based machine learning models for predicting alk rearrangement status in lung adenocarcinoma patients[J].Front Oncol,2020,10:369. 19 Coroller TP,Agrawal V,Narayan V,et al.Radiomic phenotype features predict pathological response in non-small cell lung cancer[J].Radiother Oncol,2016,119(3):480-486. 20 孙明亮,徐建宇.早期非小细胞肺癌立体定向放疗的相关研究[J].实用肿瘤学杂志,2018,32(1):53-56. 21 Lafata KJ,Hong JC,Geng R,et al.Association of pre-treatment radiomic features with lung cancer recurrence following stereotactic body radiation therapy[J].Phys Med Biol,2019,64(2):25007. 22 Coroller TP,Agrawal V,Huynh E,et al.Radiomic-based pathological response prediction from primary tumors and lymph nodes in NSCLC[J].J Thorac Oncol,2017,12(3):467-476. 23 Jiang M,Sun D,Guo Y,et al.Assessing PD-L1 expression level by radiomic features from pet/ct in nonsmall cell lung cancer patients:an initial result[J].Acad Radiol,2020,27(2):171-179. 24 Ramella S,Fiore M,Greco C,et al.A radiomic approach for adaptive radiotherapy in non-small cell lung cancer patients[J].PLoS One,2018,13(11):e207455. 25 Bousabarah K,Temming S,Hoevels M,et al.Radiomic analysis of planning computed tomograms for predicting radiation-induced lung injury and outcome in lung cancer patients treated with robotic stereotactic body radiation therapy[J].Strahlenther Onkol,2019,195(9):830-842. 26 Huang L,Chen J,Hu W,et al.Assessment of a radiomic signature developed in a general NSCLC cohort for predicting overall survival of ALK-positive patients with different treatment types[J].Clin Lung Cancer,2019,20(6):638-651. 27 Mattonen SA,Palma DA,Haasbeek CJ,et al.Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy(SABR)for lung cancer[J].Med Phys,2014,41(3):33502. 28 Mattonen SA,Palma DA,Johnson C,et al.Detection of local cancer recurrence after stereotactic ablative radiation therapy for lung cancer:physician performance versus radiomic assessment[J].Int J Radiat Oncol Biol Phys,2016,94(5):1121-1128. 29 Fried DV,Mawlawi O,Zhang L,et al.Stage III Non-Small cell lung cancer:prognostic value of FDG PET quantitative imaging features combined with clinical prognostic factors[J].Radiology,2016,278(1):214-222. 30 van Velden FH,Kramer GM,Frings V,et al.Repeatability of radiomic features in Non-Small-Cell lung cancer[18F]FDG-PET/CT Studies:impact of reconstruction and delineation[J].Mol Imaging Biol,2016,18(5):788-795. 31 Zhao B,Tan Y,Tsai W,et al.Reproducibility of radiomics for deciphering tumor phenotype with imaging[J].Sci Rep,2016,6:23428. |