Sandbody architecture types and diagenesis differences of quartz sandstone of the Member 23 of Permian Shanxi Formation,eastern Ordos Basin
Li Mi1, 2, Yao Jing-Li3, Guo Ying-Hai1, 2, Li Zhuang-Fu1, 2, Wang Huai-Chang3, Song Xue-Juan1, 2
1 Key Laboratory of CBM Resource and Reservoir-Generating Process,Xuzhou 221008,Jiangsu; 2 School of Resources and Earth Science,China University of Mining & Technology,Xuzhou 221116,Jiangsu; 3 Research Institute of Petroleum Exploration and Development,Changqing Oilfield Company,PetroChina,Xi’an 710021,Shaanxi;
Abstract:There exists a certain correlation between sandbody architectures and single well production of quartz sandstone of the Member 23 of Permian Shanxi Formation in the Zizhou-Qingjian area in the Ordos Basin. Based on the vertical grain-size cycles of the individual sandbody and natural gamma logging data,the sandbody architectures of the study area has been divided into block,normal grading and superimposed types. The paper shows the differences of diagenesis in types,characteristics,intensity,products,vertical variation and pore evolution of the three type sandbodies by casting thin sections observation and particle size analysis. The study shows the intensity and distribution characteristics of the dissolution and compaction of the three type sandbodies are quite different. The vertical distribution of particle size is the direct factor that restricts the diagenetic evolution of the different types of sandbodies,which in turn affect physical property of sandstone reservoirs and finally determine the vertical distribution of gas-bearing layer and tight layer. The reservoir of the block type sandbodies has both primary pores and induced pores of which the gas-bearing layer is thick and tight layer is locally developed. The middle and lower part of reservoirs of normal grading type sandbodies are characterized by poor dissolution degree, which have more primary and less induced pores and are gas-bearing layer. The upper part of reservoir is tight due to strong compaction and cementation. The superimposed type sandbodies formed in the sedimentary environment of gradually strengthened fluvial influence have characteristcs of the both two former types, with the gas-bearing layers are thick and multizone.
Li Mi,Yao Jing-Li,Guo Ying-Hai et al. Sandbody architecture types and diagenesis differences of quartz sandstone of the Member 23 of Permian Shanxi Formation,eastern Ordos Basin[J]. JOPC, 2018, 20(3): 465-476.
[1] 包洪平,杨奕华,王晓方,南珺祥. 2007. 同沉积期火山作用对鄂尔多斯盆地上古生界砂岩储层形成的意义. 古地理学报, 9(4): 397-406. [Bao H P,Yang Y H,Wang X F,Nan J X.2007. Significance of synsedimentary volcanism for formation of sandstone reservoirs of the Upper Paleozoic in Ordos Basin. Jounal of Palaeogeography(Chinese Edition), 9(4): 397-406] [2] 陈飞,罗平,张兴阳,王训练,罗忠,樊太亮,刘柳红,单伟. 2010. 鄂尔多斯盆地东缘上三叠统延长组砂体结构与层序地层学研究. 地学前缘, 17(1): 330-338. [Chen F,Luo P,Zhang X Y,Wang X L,Luo Z,Fan T L,Liu L H,Shan W.2010. Stratigraphic architecture and sequence stratigraphy of Upper Triassic Yanchang Formation in the eastern margin of Ordos Basin. Earth Science Frontiers, 17(1): 330-338] [3] 楚美娟,郭正权,齐亚林,程党性. 2013. 鄂尔多斯盆地延长组长8储层定量化成岩作用及成岩相分析. 天然气地球科学, 24(3): 477-484. [Chu M J,Guo Z Q,Qi Y L,Cheng D X.2013. Quantitative diagenesis and diagenetic facies analysis on Chang 8 reservoir of Yanchang Formation in Ordos Basin. Natural Gas Geoscience, 24(3): 477-484] [4] 郭英海,刘焕杰,权彪,汪泽成,钱凯. 1998. 鄂尔多斯地区晚古生代沉积体系及古地理演化. 沉积学报, 16(3): 44-51. [Guo Y H,Liu H J,Quan B,Wang Z C,Qian K.1998. Late Paleozoic sedmentary system and Paleogeographic evolution of Ordos area. Acta Sedmentologica Sinica, 16(3): 44-51] [5] 赖锦,王贵文,黄龙兴,官斌,蒋晨,冉冶,张晓涛,李梅,王迪. 2015. 致密砂岩储集层成岩相定量划分及其测井识别方法. 矿物岩石地球化学通报, 34(1): 128-138. [Lai J,Wang G W,Huang L X,Guan B,Jiang C,Ran Y,Zhang X T,Li M,Wang D.2015. Quantitative classification and logging identification method for diagenetic facies of tight sandstones. Bulletin of Mineralogy,Petrology and Geochemistry, 34(1): 128-138] [6] 李潮流,李长喜,侯雨庭,石玉江,王长胜,胡法龙,刘秘. 2015. 鄂尔多斯盆地延长组长7段致密储集层测井评价. 石油勘探与开发, 42(5): 608-614. [Li C L,Li C X,Hou Y T,Shi Y J,Wang C S,Hu F L,Liu M.2015. Well logging evaluation of Triassic Chang 7 Member tight reservoirs,Yanchang Formation,Ordos Basin,NW China. Petroleum Exploration and Development, 42(5): 608-614] [7] 李继岩,宋国奇,王晓蕾,陈静静,宋明福. 2015. 不同沉积环境形成的储层成岩差异性研究: 以东营凹陷王家岗地区红层与博兴洼陷灰层滩坝为例. 天然气地球科学, 26(2): 269-276. [Li J Y,Song G Q,Wang X L,Chen J J,Song M F.2015. Study on the differences of diagenetic evolution under different sedimentary environment: Take an example of the red-beds of Wangjiagang,Dongying Sag and Oligocene gray-beds beach-bar of Boxing Sag. Natural Gas Geoscience, 26(2): 269-276] [8] 李士祥,楚美娟,黄锦绣,郭正权. 2013. 鄂尔多斯盆地延长组长8油层组砂体结构特征及成因机理. 石油学报, 34(3): 435-444. [Li S X,Chu M J,Huang J X,Guo Z Q.2013. Characteristic and genetic mechanism of sandbody architexture in Chang-8 oil layer of Yanchang Formation,Ordos Basin. Acta Petrolei Sinica, 34(3): 435-444] [9] 李易隆,贾爱林,何东博. 2013. 致密砂岩有效储层形成的控制因素. 石油学报, 34(1): 71-82. [Li Y L,Jia A L,He D B.2013. Control factors on the formation of effective reservoirs in tight sands: Examples from Guang’an and Sulige gasfields. Acta Petrolei Sinica, 34(1): 71-82] [10] 李忠,刘嘉庆. 2009. 沉积盆地成岩作用的动力机制与时空分布研究若干问题及趋向. 沉积学报, 27(5): 837-848. [Li Z,Liu J Q.2009. Key problems and research trend of diagenesis geodynamic mechanism and spatio-temporal distribution in sedimentary basin. Acta Sedimentologica Sinica, 27(5): 837-848] [11] 刘新社,周立发,侯云东. 2007. 运用流体包裹体研究鄂尔多斯盆地上古生界天然气成藏. 石油学报, 28(6): 37-42. [Liu X S,Zhou L F,Hou Y D.2007. Study of gas charging in the Upper Paleozoic of Ordos Basin using fluid inclusion. Acta Petrolei Sinica, 28(6): 37-42] [12] 罗静兰,魏新善,姚泾利,刘新社,刘小洪. 2010. 物源与沉积相对鄂尔多斯盆地北部上古生界天然气优质储层的控制. 地质通报, 29(6): 811-820. [Luo J L,Wei X S,Yao J L,Liu X S,Liu X H.2010. Provenance and depositional facies controlling on the Upper Paleozoic excellent natural gas-reservoir in northern Ordos basin,China. Geological Bulletin of China, 29(6): 811-820] [13] 吕正祥,刘四兵. 2009. 川西须家河组超致密砂岩成岩作用与相对优质储层形成机制. 岩石学报, 25(10): 2373-2383. [Lü Z X,Liu S B.2009. Ultra-tight sandstone diagenesis and mechanism for the formation of relatively high-quality reservoir of Xujiahe Group in western Sichuan. Acta Petrologica Sinica, 25(10): 2373-2383] [14] 尚冠雄. 1997.华北地台晚古生代煤地质学研究.太原: 山西科学技术出版社,1-405. [Shang G X.1997. Late Paleozoic Coal Geology of North China Platform. Taiyuan: Shanxi Science and Technology Press,1-405] [15] 沈玉林,郭英海,李壮福,魏新善,邵玉宝. 2012. 鄂尔多斯地区石炭—二叠纪三角洲的沉积机理. 中国矿业大学学报, 41(6): 936-942. [Shen Y L,Guo Y H,Li Z F,Wei X S,Shao Y B.2012. Deposition mechanism of delta Carboniferous-Permian in Ordos Basin. Journal of China University of Mining & Technology, 41(6): 936-942] [16] 寿建峰,张惠良,沈扬,王鑫,朱国华,靳春松. 2006. 中国油气盆地砂岩储层的成岩压实机制分析. 岩石学报, 22(8): 2165-2170. [Shou J F,Zhang H L,Shen Y,Wang X,Zhu G H,Jin C S.2006. Diagenetic mechanisms of sandstone reservoirs in China oil and gas-bearing basins. Acta Petrologica Sinica, 22(8): 2165-2170] [17] 寿建峰. 2005. 砂岩动力成岩作用.北京: 石油工业出版社,1-153. [Shou J F.2005. Dynamic Diagenesis of Sandstone. Beijing: Petroleum Industry Press,1-153] [18] 孙天皛. 2012. 葡北油田水下分流河道砂体结构分析及剩余油分布模式. 石油天然气学报, 34(10): 40-42. [Sun T X.2012. The sand-body structure of underwater distributary channel and remaining oil pattern in Pubei oilfield. Journal of Oil and Gas Technology, 34(10): 40-42] [19] 王东方,陈从云,杨森,刘效良,张炯飞,杨学增. 1992. 中朝陆台北缘大陆构造地质. 北京: 地震出版社,1-373. [Wang D F,Chen C Y,Yang S,Liu X L,Zhang J F,Yang X Z.1992.Tectonics of Northern Margin of Sino-Korea Platform. Beijing:Seismological Publishing House,1-373] [20] 王双明. 1996.鄂尔多斯盆地聚煤规律及煤炭资源评价.北京: 煤炭工业出版社,1-437. [Wang S M.1996. Coal Accumulating and Coal Resource Evaluation of Ordos Basin. Beijing: China Coal Industry Publishing House,1-437] [21] 杨华,杨奕华,石小虎,尹鹏. 2007. 鄂尔多斯盆地周缘晚古生代火山活动对盆内砂岩储层的影响. 沉积学报, 25(4): 526-534. [Yang H,Yang Y H,Shi X H,Yin P.2007. Influence of the Late Paleozoic volcanic activity on the sandstone reservoir in the interior of Ordos Basin. Acta Sedmentologica Sinica, 25(4): 526-534] [22] 杨奕华,包洪平,贾亚妮,于忠平. 2008. 鄂尔多斯盆地上古生界砂岩储层控制因素分析. 古地理学报, 10(1): 25-32. [Yang Y H,Bao H P,Jia Y N,Yu Z P.2008. Analysis on control of sandstone reservoir of the Upper Paleozoic in Ordos Basin. Journal of Palaeogeograpgy(Chinese Edition), 10(1): 25-32] [23] 于兴河. 2009. 油气储层地质学基础.北京: 石油工业出版社,1-393. [YU X H.2009. Basis of Hydrocarbon Reservoir Geology. Beijing: Petroleum Industry Press,1-393] [24] 赵云翔,陈景山,王建峰,丁熊,姚泾利,李士祥,李宁. 2013. 鄂尔多斯盆地延长组长9砂体的垂向结构及主控因素分析. 沉积学报, 31(1): 77-88. [Zhao Y X,Chen J S,Wang J F,Ding X,Yao J L,Li S X,Li N.2013. Vertical structure and dominating factors of Chang 9 sandbody from Yanchang Formation in Ordos Basin. Acta Sedimentologica Sinica, 31(1): 77-88] [25] 郑浚茂,应凤祥. 1997. 煤系地层(酸性水介质)的砂岩储层特征及成岩模式. 石油学报, 18(4): 19-24. [Zheng J M,Ying F X.1997. Reservoir characteristics and diagenetic model of sandstone intercalated in coal-bearing strata(acid water medium). Acta Petrolei Sinica, 18(4): 19-24] [26] 朱筱敏. 2008. 沉积岩石学. 北京: 石油工业出版社,1-484. [Zhu X M.2008. Sedimentary Petrology. Beijing: Petroleum Industry Press,1-484] [27] Barth T,Bjørlykke K.1993. Organic acids from source rock maturation: Generation potentials,transport mechanisms and relevance for mineral diagenesis. Applied Geochemistry, 8(4): 325-337. [28] Beard D C,Weyl P K.1973. Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin, 57(2): 349-369. [29] Bjørlykke K,Jahren J.2012. Open or closed geochemical systems during diagenesis in sedimentary basins: Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs.AAPG Bulletin, 96(12): 2193-2214. [30] Giles M R.1987. Mass transfer and problems of secondary porosity creation in deeply buried hydrocarbon reservoirs. Marine and Petroleum Geology, 4(3): 188-204. [31] Giles M R,De Bore R B.1990. Origin and significance of redistribution secondary porosity. Marine and Petroleum Geology, 7(4): 378-397. [32] Huoseknecht D W.1987. Assessing the relative importance of compaction processes and cementation to reduction of porosity in sandstone. AAPG Bulletin, 71(3): 633-642. [33] Pittman E D,Larese R E.1991. Compaction of lithic sands: Experimental results and applications. AAPG Bulletin, 75(8): 1279-1299. [34] Rittenhouse G.1971. Pore-space reduction by solution and cementation. AAPG Bulletin, 55(1): 80-91. [35] Surdam R C,Crossey L J,Hagen E S,Heasler H P.1989. Organic-inorganic interactions and sandstones diagenesis. AAPG Bulletin, 73(1): 1-23. [36] Thyne G.2001. A model for diagenetic mass transfer between adjacent sandstone and shale. Marine and Petroleum Geology, 18(6): 743-755. [37] Wagoner J C,Mitchum R M,Campion K M,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores,and out crops: Concepts for high-resolution correlation of time and facies. AAPG Methods in Exploration Series,No.7.