Abstract:The three-dimensional spreading characteristics of clastic rock deposition and their genesis mechanisms are the key to establish the depositional models and predict sand distribution,which is a key scientific problem in sedimentology research. Most domestic and abroad scholars considered that the planar geometry and profile filling pattern were closely related to the slope gradient,and grain-size of their deposits. Their quantitative relationships have not been uniformly and clearly understood so far. However,establishing quantitative relationships between grain-size and slope in different types of depositional systems is essential for predicting the movement patterns and their distribution of different particles in sediment bodies. In this paper,the geological characteristics of the source,transport and sink areas were analyzed. Based on the force analysis of unidirectional water flow on different masses of particles at rest / in motion and the general topographic slope setting before deposition, the trajectories of different clastic particles in the longitudinal profile were systematically analyzed,deduced,and simulated,which shows a parabolic change with the set slope shape,reflecting the transformation of sediment-routing agent and its response characteristics with the change of slopes. The quantitative equations of flow velocity and slope of the longitudinal profile of the terrestrial clastic depositional systems were established. It is clearly pointed out that the flow velocity or regime of sediments defines their depositional mode, and general rule of the accretion pattern and sediment distribution in the sink area is clarified. In this paper,the “mass-slope” coupling effect of clastic depositional systems and its main connotation are proposed,and the geological response of the “mass-slope” coupling effect on the distribution of sediment types and their spatial morphological characteristics of various depositional systems is described from various dimensions and source-to-sink segments.
[1] 操应长,徐琦松,王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116-131. [Cao Y C,Xu Q S,Wang J. 2018. Progress in “Source-to-Sink” system research. Earth Science Frontiers, 25(4): 116-131] [2] 龚承林,刘力,邵大力,郭荣涛,朱一杰,齐昆. 2022. 晚中新世以来孟加拉—尼科巴扇跷跷板式沉积转换及其源-汇成因机制. 地学前缘, 29(4): 25-41. [Gong C L,Liu L,Shao D L,Guo R T,Zhu Y J,Qi K. 2022. Epositional patterns of the Bengal-Nicobar Fan system since the Late Miocene: seesaw-like stepwise changes and the source-sink model. Earth Science Frontiers, 29(4): 25-41] [3] 韩其为,何明民. 1979. 单颗泥沙运动力学及统计规律. 力学与实践, 1(4): 35. [Han Q W,He M M. 1979. Mechanics and statistical law of single sediment movement. Mechanics and Practice, 1(4): 35] [4] 何起祥. 2010. 沉积动力学若干问题的讨论. 海洋地质与第四纪地质, 30(4): 1-10. [He Q X. 2010. A discussion on sediment dynamics. Marine Geology & Quaternary Geology, 30(4): 1-10] [5] 蒋恕,王浩,郭涛,张如才,杜晓峰,张钰莹,刘恩豪,王华. 2022. 渤海湾盆地辽东湾坳陷盆中隆起缓坡带重力流沉积形态及其控制因素. 石油与天然气地质, 43(4): 823-832. [Jiang S,Wang H,Guo T,Zhang R C,Du X F,Zhang Y Y,Liu E H,Wang H. 2022. Geomorphology of gravity flow deposits in the gentle slope zone of intra-basinal high in the Liaodong Bay Depression,Bohai Bay Basin and its controlling factors. Oil & Gas Geology, 43(4): 823-832] [6] 李树芳. 1993. 坡度系数计算法. 建筑工人,(6): 15-16. [Li S F. 1993. Slope coefficient calculation method. Construction Workers,(6): 15-16] [7] 齐亚林,赵彦德,李元昊,王克. 2018. 泥沙动力学研究方法、技术、进展及沉积学意义. 地球科学前沿(汉斯), 8(1): 7. [Qi Y L,Zhao Y D,Li Y H,Wang K. 2018. Sedimentology significance from sediment dynamics of research method,technology,progress. Frontiers in Earth Sciences(Hans), 8(1): 7] [8] 邵龙义,王学天,李雅楠,刘炳强. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 67-81. [Shao L Y,Wang X T,Li Y N,Liu B Q. 2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography(Chinese Edition), 21(1): 67-81] [9] 孙龙德,方朝亮,李峰,朱如凯,何东博. 2010. 中国沉积盆地油气勘探开发实践与沉积学研究进展. 石油勘探与开发, 37(4): 385-396. [Sun L D,Fang C L,Li F,Zhu R K,He D B. 2010. Petroleum exploration and development practices of sedimentary basins in China and research progress of sedimentology. Petroleum Exploration and Development, 37(4): 385-396] [10] 王成善,林畅松. 2021. 中国沉积学近十年来的发展现状与趋势. 矿物岩石地球化学通报, 40(6): 1217-1229,1448-1449. [Wang C S,Lin C S. 2021. Development status and trend of sedimentology in China in recent ten years. Bulletin of Mineralogy,Petrology and Geochemistry, 40(6): 1217-1229,1448-1449] [11] 徐长贵,杜晓峰,徐伟,赵梦. 2017. 沉积盆地“源-汇”系统研究新进展. 石油与天然气地质, 38(1): 1-11. [Xu C G,Du X F,Xu W,Zhao M. 2017. New advances of the “Source-to-Sink” system research in sedimentary basin. Oil & Gas Geology, 38(1): 1-11] [12] 叶连俊,孙枢,李继亮. 1988. 中国的沉积学进展与展望. 矿物岩石地球化学通讯,(2): 77-80. [Ye L J,Sun S,Li J L. 1988. Progress and prospect of sedimentology in China. Bulletin of Mineralogy,Petrology and Geochemistry,(2): 77-80] [13] 于兴河. 2002. 碎屑岩系油气储层沉积学. 北京: 石油工业出版社. [Yu X H. 2002. Sedimentology of Oil and Gas Reservoirs in Clastic Rocks. Beijing: Petroleum Industry Press] [14] 于兴河,王德发,郑浚茂,孙志华. 1994. 辫状河三角洲砂体特征及砂体展布模型: 内蒙古岱海湖现代三角洲沉积考察. 石油学报, 15(1): 26-37. [Yu X H,Wang D F,Zheng J M,Sun Z H. 1994. Braided river delta sand body characteristics and sand body distribution model: investigation of modern delta deposits in Daihai Lake,Inner Mongolia. Acta Petrolei Sinica, 15(1): 26-37] [15] 于兴河,李胜利,李顺利. 2013. 三角洲沉积的结构: 成因分类与编图方法. 沉积学报, 31(5): 782-797. [Yu X H,Li S L,Li S L. 2013. Texture-genetic classifications and mapping methods for deltaic deposits. Acta Sedimentologica Sinica, 31(5): 782-797] [16] 于兴河,李顺利,谭程鹏,瞿建华,张驰,赵晨帆. 2018. 粗粒沉积及其储层表征的发展历程与热点问题探讨. 古地理学报, 20(5): 713-736. [Yu X H,Li S L,Tan C P,Qu J H,Zhang C,Zhao C F. 2018. Coarse-grained deposits and their reservoir characterizations: a look back to see forward and hot issues. Journal of Palaeogeography(Chinese Edition), 20(5): 713-736] [17] 朱筱敏,钟大康,袁选俊,张惠良,朱世发,孙海涛,高志勇,鲜本忠. 2016. 中国含油气盆地沉积地质学进展. 石油勘探与开发, 43(5): 820-829. [Zhu X M,Zhong D K,Yuan X J,Zhang H L,Zhu S F,Sun H T,Gao Z Y,Xian B Z. 2016. Development of sedimentary geology of petroliferous basins in China. Petroleum Exploration and Development, 43(5): 820-829] [18] Alberto R,Sergio A,Eduardo G. 2018. Quantifying roundness of detrital minerals by image analysis: sediment transport,shape effects,and provenance implications. Journal of Sedimentary Research, 88(2): 276-289. doi: https://doi.org/10.2110/jsr.2018.12. [19] Allen P A. 2008. Time scales of tectonic landscapes and their sediment routing systems. Geological Society,London,Special Publications, 296(1): 7-28. [20] Allen P A.2017. Sediment Routing Systems: The Fate of Sediment from Source-to-Sink. Cambridge University Press. [21] Anderton R. 1985. Clastic facies models and facies analysis. Geological Society,London,Special Publications, 18(1): 31-47. [22] Armitage J J,Duller R A,Whittaker A C,Allen P A. 2011. Transformation of tectonic and climatic signals from source to sedimentary archive. Nature Geoscience, 4(4): 231-235. [23] Ashton A D,Giosan L. 2011. Wave-angle control of delta evolution. Geophysical Research Letters, 38(13): 1-6. [24] Ashworth P J,Ferguson R I. 1989. Size-selective entrainment of bed load in gravel bed streams. Water Resources Research, 25(4): 627-634. [25] Bagnold R A. 1986. Transport of solids by natural water flow: evidence for a worldwide correlation. Proceedings of the Royal Society of London. Mathematical and Physical Sciences, 405(1829): 369-374. [26] Bentley Sr S J,Blum M D,Maloney J,Pond L,Paulsell R. 2016. The Mississippi River source-to-sink system: perspectives on tectonic,climatic,and anthropogenic influences,Miocene to Anthropocene. Earth-Science Reviews, 153: 139-174. [27] Bhattacharya J P,Copeland P,Lawton T F,Holbrook J. 2016. Estimation of source area,river paleo-discharge,paleoslope,and sediment budgets of linked deep-time depositional systems and implications for hydrocarbon potential. Earth-Science Reviews, 153: 77-110. [28] Boudet L,Sabatier F,Radakovitch O. 2017. Modelling of sediment transport pattern in the mouth of the Rhone delta: role of storm and flood events. Estuarine,Coastal and Shelf Science, 198: 568-582. [29] Brenna A,Marchi L,Borga M,Ghinassi M,Zaramella M,Surian N. 2021. Sediment-water flows in mountain catchments: insights into transport mechanisms as responses to high-magnitude hydrological events. Journal of Hydrology, 602: 126716. [30] Bull W B. 1977. The alluvial-fan environment. Progress in Physical Geography, 1(2): 222-270. [31] Cai X Y,Zhu R. 2011. Cretaceous sandbody characters at shallow-water lake delta front and the sedimentary dynamic process analysis in Songliao Basin,China. Acta Geologica Sinica-English Edition, 85(6): 1478-1494. [32] Caracciolo L. 2020. Sediment generation and sediment routing systems from a quantitative provenance analysis perspective: review,application and future development. Earth-Science Reviews, 209: 103226. [33] Catuneanu O. 2006. Principles of Sequence Stratigraphy. Trevor Elliott. [34] Catuneanu O,Abreu V,Bhattacharya J P,Blum M D,Dalrymple R W,Eriksson P G,Winker C. 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92(1-2): 1-33. [35] Church M. 2006. Bed material transport and the morphology of alluvial river channels. Annual Review of Earth Planetary Sciences, 34: 325-354. [36] Cogan J,Gratchev I. 2019. A study on the effect of rainfall and slope characteristics on landslide initiation by means of flume tests. Landslides, 16(12): 2369-2379. [37] Cross T. 1988. Controls on coal distribution in transgressive-regressive cycles,Upper Cretaceous,Western Interior,USA. In: Wilgus C K,Hastings B S,Posamentier H,van Wagoner J,Ross C A S,Kendal C G St C(eds). Sea-level changes: an integrated approach. Society for Sedimentary Geology,Special Publication, 42: 371-389. https://doi.org/10.2110/pec.88.01.0371. [38] Dade W B, Friend P F. 1998. Grain-size, sediment-transport regime, and channel slope in alluvial rivers. The Journal of Geology, 106(6): 661-676. [39] Emery D,Myers K. 2009. Sequence Stratigraphy. USA: John Wiley & Sons, 11-45. [40] Fanning J T. 1877. A Practical Treatise on Water-Supply Engineering: Relating to the Hydrology,Hydrodynamics,and Practical Construction of Water-Works,in North America. With Numerous Tables and Illustrations. USA: Wagoner Nostrand,1-714. [41] Ferrer-Boix C,Martín-Vide J P,Parker G. 2015. Sorting of a sand-gravel mixture in a Gilbert-type delta. Sedimentology, 62(5): 1446-1465. [42] Fryirs K A,Brierley G J. 2012. Geomorphic Analysis of River Systems: An Approach to Reading the Landscape. USA, John Wiley & Sons. [43] Geleynse N,Storms J E,Walstra D J R,Jagers H A,Wang Z B,Stive M J. 2011. Controls on river delta formation: insights from numerical modelling. Earth and Planetary Science Letters, 302(1-2): 217-226. [44] Harvey A M, Mather A E, Stokes M. 2005. Alluvial fans: geomorphology, sedimentology, dynamics. Geological Society of London, Special Publications, 251: 1-7. [45] Hayes M O. 1980. General morphology and sediment patterns in tidal inlets. Sedimentary Geology, 26(1-3): 139-156. [46] Hoy R G,Ridgway K D. 2003. Sedimentology and sequence stratigraphy of fan-delta and river-delta deposystems,Pennsylvanian Minturn Formation,Colorado. AAPG Bulletin, 87(7): 1169-1191. [47] Kenyon P M,Turcotte D L. 1985. Morphology of a delta prograding by bulk sediment transport. Geological Society of America Bulletin, 96(11): 1457-1465. [48] Lajeunesse E,Malverti L,Charru F. 2010. Bed load transport in turbulent flow at the grain scale: experiments and modeling. Journal of Geophysical Research: Earth Surface,115(F04001): 1-16. [49] Lin C S,Xia Q L,Shi H S,Zhou X H. 2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9-20. [50] Long D G F. 2021. Trickling down the paleoslope: an empirical approach to paleohydrology. Earth-Science Reviews, 220: 103740. [51] McLaren P,Bowles D. 1985. The effects of sediment transport on grain-size distributions. Journal of Sedimentary Research, 55: 457-470. [52] McLaren P,Hill S H,Bowles D. 2007. Deriving transport pathways in a sediment trend analysis(STA). Sedimentary Geology, 202(3): 489-498. [53] Nemec W,Steel R J. 1984. Alluvial and coastal conglomerates: their significant features and some comments on gravelly mass-flow deposits. In: Sedimentology of Gravel and Conglomerates. Canada: Canadian Society of Petroleum Geologists, 1-31. [54] Nemec W,Steel R J,Poreebski S J,Spinnangr Å. 1984. Domba Conglomerate,Devonian,Norway: process and lateral variability in a mass flow-dominated,lacustrine fan-delta. In: Canadian Society of Petroleum Geologists(ed). Sedimentology of Gravels and Conglomerates. Calgary Alta, Canada: Canadian Society of Petroleum Geologists, 295-320. [55] Nichols G. 2009. Sedimentology and Stratigraphy. USA: John Wiley & Sons, 5-35. [56] Parsons D R,Best J L,Lane S N,Orfeo O,Hardy R J,Kostaschuk R. 2010. Form roughness and the absence of secondary flow in a large confluence-diffluence,Rio Paraná,Argentina. Earth Surface Processes & Landforms, 32(1): 155-162. [57] Patruno S,Hampson G J,Jackson C A L,Dreyer T. 2015. Clinoform geometry,geomorphology,facies character and stratigraphic architecture of a sand-rich subaqueous delta: Jurassic Sognefjord Formation,offshore Norway. Sedimentology, 62(1): 350-388. [58] Prior D B,Doyle E H,Kaluza M J. 1989. Evidence for sediment eruption on deep sea floor,Gulf of Mexico. Science, 243(4890): 517-519. [59] Reading H G,Richards M. 1994. Turbidite systems in deep-water basin margins classified by grain size and feeder system. AAPG Bulletin, 78(5): 792-822. [60] Reading H G. 2009. Sedimentary Environments: Processes,Facies and Stratigraphy. USA: John Wiley & Sons, 5-25. [61] Reitz M D,Jerolmack D J. 2012. Experimental alluvial fan evolution: channel dynamics,slope controls,and shoreline growth. Journal of Geophysical Research: Earth Surface,117(F02021): 1-19. [62] Shanmugam G. 2013. New perspectives on deep-water sandstones: implications. Petroleum Exploration and Development, 40(3): 294-301. [63] Sømme T O,Jackson C A L. 2013. Source-to-sink analysis of ancient sedimentary systems using a subsurface case study from the Møre-Trøndelag area of southern Norway: part 2-sediment dispersal and forcing mechanisms. Basin Research, 25(5): 512-531. [64] Sternberg H. 1875. Untersuchungen uber Langen-und Querprofil geschiebefuhrender Flusse. Zeitshrift fur Bauwesen, 25: 483-506. [65] Stokes G G. 1851. On the effect of the internal friction of fluids on the motion of pendulums. Oxford England: University Press, 8-106. [66] Trask P D. 1959. Effect of grain size on strength of mixtures of clay,sand,and water. Geological Society of America Bulletin, 70(5): 569-580. [67] Udden J A. 1914. Mechanical composition of clastic sediments. Geological Society of America Bulletin, 25: 655-744. [68] Vail P R,Mitchum Jr R M,Thompson III S. 1977. Seismic stratigraphy and global changes of sea level: Part 3. Relative changes of sea level from Coastal Onlap: section 2. Application of Seismic Reflection Configuration to Stratigrapic Interpretation: 63-81. [69] Visher G S. 1969. Grain size distributions and depositional processes. Journal of Sedimentary Research, 39(3): 1074-1106. [70] Wentworth C K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30: 377-392. [71] Wilcock P R,Crowe J C. 2003. Surface-based transport model for mixed-size sediment. Journal of Hydraulic Engineering, 129(2): 120-128. [72] Wood A. 1942. The development of hillside slopes. Proceedings of the Geologists' Association, 53(3-4): 128-IN3. [73] Yu X H,Li S L,Chen B T,Tan C P,Xie J,Hu X N. 2012. Interaction between downslope and along slope processes on the margins of Daihai lake,north China: implication for deltaic sedimentation models of lacustrine rift basin. Acta Geologica Sinica-English Edition, 86(4): 932-948. [74] Yu X H,Li S L,Tan C P,Xie J,Chen B T,Yang F,Liu L. 2013. The response of deltaic systems to climatic and hydrological changes in Daihai Lake rift basin,Inner Mongolia,northern China. Journal of Palaeogeography, 2(1): 41-55.