Marine ichnofossils as a record of major biodiversification events in the Phanerozoic
XU Qingyang1, FAN Ruoying1, GONG Yiming1,2
1 School of Earth Sciences,China University of Geosciences(Wuhan), Wuhan 430074, China; 2 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences(Wuhan),Wuhan 430074, China
Abstract:In this paper,we analyzed the trace fossil records of the major Phanerozoic biodiversification events,including the Cambrian Explosion,the Great Ordovician Biodiversification Event,and the Mesozoic Marine Revolution. The ichnodiversity and ichnodisparity of marine trace fossils show a positive correlation with biodiversity during these three biodiversification events. The intensity and depth of bioturbations both increased distinctly. The feeding strategies and the behavior of marine trace-makers became more complex. The most prominent change in the trace-making behavior during the Cambrian Explosion is the appearance of vertical burrows(or vertical elements in burrows). The shallow-marine ichnofauna expanded to the bathyal-marine and deep-marine environments during the Ordovician,as represented by the appearance of morphologically complex deep-marine trace fossils. It shows a further intensification of the exploitation of the marine benthic ecological niches in the Cretaceous. Characteristic change during this period is the significant diversification of deep-marine graphoglyptids,with the development of multiple morphological types and feeding strategies. Under the influences of the environment and biotic changes,marine ichnofaunas became more complicated in morphology and ethology and adopted progressively wider environmental distribution during the Phanerozoic. The marine ichnofaunas displayed increasing penetration depth,transferred from two-dimensional to three-dimensional structures,and radiated from the shallow shelf to the deep sea and continent. These features may be attributed to the process that organisms acquire ecological opportunities.
XU Qingyang,FAN Ruoying,GONG Yiming. Marine ichnofossils as a record of major biodiversification events in the Phanerozoic[J]. JOPC, 2023, 25(2): 431-450.
[1] 费安玮. 2000. 桌子山中奥陶世公乌素组遗迹化石组合与古地理环境. 现代地质, 14(3): 366-372, 395-396. [Fei A W.2000. Trace fossil assemblages and palaeoenvironment of Middle Ordovician Gongwusu Formation,Zhuozishan,Inner Mongolia. Geoscience, 14(3): 366-372, 395-396] [2] 费安玮. 2001. 鄂尔多斯盆地拉什仲组遗迹化石组合与古环境. 高校地质学报, 7(3): 278-287. [Fei A W.2001. Study of trace fossil assemblage and paleoenvironment of Middle Ordovician Lashizhong Formation,Ordos Basin. Geological Journal of China Universities, 7(3): 278-287] [3] 费安玮,刘成林,甘军,张忠涛. 2004. 鄂尔多斯盆地三道坎组混合沉积的生物扰动构造与古地理. 中国地质, 31(4): 347-355. [Fei A W,Liu C L,Gan J,Zhang Z T.2004. Bioturbation structures and paleogeography of mixed deposits of the Lower Ordovician Sandaokan Formation,Ordos Basin. Geology in China, 31(4): 347-355] [4] 李日辉. 1993. 内蒙古桌子山地区中奥陶世公乌素组的遗迹化石及遗迹相. 古生物学报, 32(1): 88-104, 145-148. [Li R H.1993. Trace fossils and ichnofacies of Middle Gongwusu Formation,Zhuozishan,Ordovician Inner Mongolia. Acta Palaeontologica Sinica, 32(1): 88-104, 145-148] [5] 刘梦瑶,张立军. 2018. 遗迹歧异度(ichnodisparity): 另眼看寒武纪生命大爆发. 古生物学报, 57(4): 415-423. [Liu M Y,Zhang L J.2018. Ichnodisparity: another view of Cambrian explosion. Acta Palaeontologica Sinica, 57(4): 415-423] [6] 马克平. 1993. 试论生物多样性的概念. 生物多样性, 1(1): 20-22. [Ma K P.1993. On the concept of biodiversity. Biodiversity Science, 1(1): 20-22] [7] 杨式溥. 1990. 古遗迹学. 北京: 地质出版社,1-194. [Yang S P.1990. Palaeoichnology. Beijing: Geological Publishing House,1-194] [8] 詹仁斌,靳吉锁,刘建波. 2013. 奥陶纪生物大辐射研究: 回顾与展望. 科学通报, 58(33): 3357-3371. [Zhan R B,Jin J S,Liu J B.2013. Investigation on the Great Ordovician Biodiversification Event(GOBE): review and prospect. Chinese Science Bulletin, 58(33): 3357-3371] [9] Archibald J D,Deutschman D H.2001. Quantitative analysis of the timing of the origin and diversification of extant placental orders. Journal of Mammalian Evolution, 8(2): 107-124. [10] Ayranci K,Wetzel A,Kaminski M A,Kurtulus B,Rabaoui L.2022. Possibly the oldest fish-made resting traces. Ichnos,29(2):61-70. [11] Barnes C R.2004. Was there an Ordovician superplume event. In: Webby B D,Droser M L,Paris F,Percival I G(eds). The Great Ordovician Biodiversification Event. New York: Columbia University Press,77-80. [12] Baucon A,Bordy E,Brustur T,Buatois L A,Cunningham T,De C,Duffin C,Felletti F,Gaillard C,Hu B,Hu L,Jensen S,Knaust D,Lockley M,Lowe P,Mayor A,Mayoral E,MikulአR,Muttoni G,de Carvalho C N,Pemberton S G,Pollard J,Rindsberg A K,Santos A,Seike K,Song H B,Turner S,Uchman A,Wang Y Y,Gong Y M,Zhang L,Zhang W T. 2012. A History of Ideas in Ichnology. In: Knaust D,Bromley R G(eds). Trace fossils as indicators of sedimentary environments. Amsterdam: Elsevier,1-43. [13] Baumiller T K,Salamon M A,Gorzelak P,Mooi R,Messing C G,Gahn F J.2010. Post-Paleozoic crinoid radiation in response to benthic predation preceded the Mesozoic marine revolution. Proceedings of the National Academy of Sciences of the United States of America, 107(13): 5893-5896. [14] Benner J S,Ekdale A A,De Gibert J M.2004. Macroborings(Gastrochaenolites)in Lower Ordovician hardgrounds of Utah: sedimentologic,paleoecologic,and evolutionary implications. Palaios, 19(6): 543-550. [15] Bottjer D J,Hagadorn J W,Dornbos S Q.2000. The Cambrian substrate revolution. GSA Today, 10(9): 1-7. [16] Buatois L A,Mángano M G.2011. Ichnology: Organism-substrate Interactions in Space and Time. Cambridge: Cambridge University Press,1-358. [17] Buatois L A,Mángano M G.2013. Ichnodiversity and ichnodisparity: significance and caveats. Lethaia, 46(3): 281-292. [18] Buatois L A,Mángano M G,Alissa A,Carr T R.2002. Sequence stratigraphic and sedimentologic significance of biogenic structures from a Late Paleozoic marginal -to open-marine reservoir,Morrow Sandstone,subsurface of southwest Kansas,USA. Sedimentary Geology, 152(1-2): 99-132. [19] Buatois L A,Gingras M K,MacEachern J,Mángano M G,Zonneveld J P,Pemberton S G,Netto R G,Martin A.2005. Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios, 20(4): 321-347. [20] Buatois L A,Mángano M G,Brussa E D,Benedetto J L,Pompei J F.2009. The changing face of the deep: colonization of the Early Ordovician deep-sea floor,Puna,northwest Argentina. Palaeogeography,Palaeoclimatology,Palaeoecology, 280(3-4): 291-299. [21] Buatois L A,García-Ramos J C,Piñuela L,Mángano M G,Rodríguez-Tovar F J.2016a. Rosselia socialis from the Ordovician of Asturias(Northern Spain)and the early evolution of equilibrium behavior in polychaetes. Ichnos, 23(1-2): 147-155. [22] Buatois L A,Mángano M G,Olea R A,Wilson M A.2016b. Decoupled evolution of soft and hard substrate communities during the Cambrian explosion and Great Ordovician Biodiversification Event. Proceedings of the National Academy of Sciences of the United States of America, 113(25): 6945-6948. [23] Buatois L A,Mángano M G,Minter N J,Zhou K,Wisshak M,Wilson M A,Olea R A.2020. Quantifying ecospace utilization and ecosystem engineering during the early Phanerozoic: the role of bioturbation and bioerosion. Science Advances, 6(33): eabb0618. [24] Carmona N B,Buatois L A,Mángano M G,Bromley R G.2008. Ichnology of the Lower Miocene Chenque formation,Patagonia,Argentina: animal-substrate interactions and the modern evolutionary fauna. Ameghiniana, 45(1): 93-122. [25] Chen Z,Zhou C M,Meyer M,Xiang K,Schiffbauer J D,Yuan X L,Xiao S H.2013. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Research, 224: 690-701. [26] Chen Z,Zhou C M,Yuan X L,Xiao S H.2019. Death march of a segmented and trilobate bilaterian elucidates early animal evolution. Nature, 573(7774): 412-415. [27] Crimes T P.1992. The record of trace fossils across the Proterozoic-Cambrian boundary. In: Lipps J H,Signor P W(eds). Origin and Early Evolution of the Metazoa. New York: Plenum Press,177-202. [28] Crimes T P,Anderson M M.1985. Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland(Canada): temporal and environmental implications. Journal of Paleontology, 59(2): 310-343. [29] Crimes T P,Fedonkin M A.1994. Evolution and dispersal of deepsea traces. Palaios, 9(1): 74-83. [30] Crimes T R,Hidalgo J F G,Poire D G.1992. Trace fossils from arenig flysch sediments of Eire and their bearing on the early colonisation of the deep seas. Ichnos, 2(1): 61-77. [31] Davies N S,Herringshaw L G,Raine R J.2009. Controls on trace fossil diversity in an Early Cambrian epeiric sea: new perspectives from northwest Scotland. Lethaia, 42(1): 17-30. [32] Deng Y Y,Fan J X,Zhang S H,Fang X,Chen Z Y,Shi Y K,Wang H W,Wang X B,Yang J,Hou X D,Wang Y,Zhang Y D,Chen Q,Yang A H,Fan R,Dong S C,Xu H Q,Shen S Z.2021. Timing and patterns of the Great Ordovician Biodiversification Event and Late Ordovician Mass Extinction: perspectives from South China. Earth-Science Reviews, 220: 103743. [33] Desjardins P R,Mángano M G,Buatois L A,Pratt B R.2010. Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains,Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia, 43(4): 507-528. [34] Droser M L.1987. Trends in extent and depth of bioturbation in Great Basin Precambrian-Ordovician strata,California,Nevada and Utah. Doctoral dissertation of University of Southern California: 1-356. [35] Droser M L.1991. Ichnofabric of the Paleozoic Skolithos ichnofacies and the nature and distribution of Skolithos piperock. Palaios, 6(3): 316-325. [36] Droser M L,Bottjer D J.1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology, 17(9): 850-852. [37] Droser M L,Gehling J G.2015. The advent of animals: the view from the Ediacaran. Proceedings of the National Academy of Sciences, 112(16): 4865-4870. [38] Droser M L,Jensen S,Gehling J G,Myrow P M,Narbonne G M.2002. Lowermost Cambrian ichnofabrics from the Chapel Island Formation,Newfoundland: implications for Cambrian substrates. Palaios, 17(1): 3-15. [39] Elicki O,Khalifa M A G,Farouk S M.2013. Cambrian ichnofossils from northeastern Egypt. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 270(2): 129-149. [40] Erickson J M.2020. Behavioral stereotypy and some ecological consequences of entrance-shaft placement of the domichnium Sanctum laurentiensis in Ordovician trepostomate Bryozoa. Ichnos, 27(2): 221-236. [41] Erwin D H.2015. Early metazoan life: divergence,environment and ecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1684): 20150036. [42] Erwin D H.2020a. A conceptual framework of evolutionary novelty and innovation. Biological Reviews, 96(1): 1-15. [43] Erwin D H.2020b. The origin of animal body plans: a view from fossil evidence and the regulatory genome. Development, 147(4): dev182899. [44] Erwin D H,Tweedt S.2011. Ecological drivers of the Ediacaran-Cambrian diversification of Metazoa. Evolutionary Ecology, 26(2): 417-433. [45] Erwin D H,Laflamme M,Tweedt S M,Sperling E A,Pisani D,Peterson K J.2011. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science, 334(6059): 1091-1097. [46] Evans S D,Droser M L,Erwin D H.2021. Developmental processes in Ediacara macrofossils. Proceedings of the Royal Society B, 288(1945): 20203055. [47] Fan J X,Shen S Z,Erwin D H,Sadler P M,MacLeod N,Cheng Q M,Hou X D,Yang J,Wang X D,Wang Y,Zhang H,Chen X,Li G X,Zhang Y C,Shi Y K,Yuan D X,Chen Q,Zhang L N,Li C,Zhao Y Y.2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272-277. [48] Fan R Y,Zong R W,Gong Y M.2019. Fish hunting trace Osculichnus and the oldest Sinusichnus sinuosus from the Upper Devonian of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 530: 103-112. [49] Fan R Y,Zong R W,Gong Y M.2021. Behavioural imprint of the Ordovician radiation: evidence from Middle-Upper Ordovician deep-sea trace fossils in western Inner Mongolia,North China. Palaeogeography,Palaeoclimatology,Palaeoecology, 563: 110174. [50] Frey R W,Howard J D.1990. Trace fossils and depositional sequences in a clastic shelf setting,Upper Cretaceous of Utah. Journal of Paleontology, 64(5): 803-820. [51] Gould S J.1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17(4): 411-423. [52] Grazhdankin D.2014. Patterns of evolution of the Ediacaran soft-bodied biota. Journal of Paleontology, 88(2): 269-283. [53] Hallam A,Swett K.1966. Trace fossils from the Lower Cambrian Pipe Rock of the north-west Highlands. Scottish Journal of Geology, 2(1): 101-107. [54] Haq B U,Al-Qahtani A M.2005. Phanerozoic cycles of sea-level change on the Arabian Platform. GeoArabia, 10(2): 127-160. [55] Harper E M,Skelton P.1993. The Mesozoic marine revolution and epifaunal bivalves. Scripta Geologica,Special Issue, 2: 127-153. [56] Hily C.1991. Is the activity of benthic suspension feeders a factor controlling water quality in the Bay of Brest?Marine Ecology Progress Series. Oldendorf, 69(1): 179-188. [57] Ivantsov A Y.2013. Trace fossils of preCambrian metazoans “Vendobionta”and “Mollusks”. Stratigraphy and Geological Correlation, 21(3): 252-264. [58] Jensen S,Mens K.1999. A Lower Cambrian shallow-water occurrence of the branching‘deep-water’ type trace fossil Dendrorhaphe from the Lontova Formation,eastern Latvia. Paläontologische Zeitschrift, 73(1): 187-193. [59] Jensen S,Palacios T.2016. The Ediacaran-Cambrian trace fossil record in the Central Iberian Zone,Iberian Peninsula. Comunicaçõe Geológicas, 103: 83-92. [60] Jensen S,Saylor B Z,Gehling J G,Germs G J B.2000. Complex trace fossils from the terminal Proterozoic of Namibia. Geology, 28(2): 143-146. [61] Jensen S,Buatois L A,Mángano M G.2013. Testing for palaeogeographical patterns in the distribution of Cambrian trace fossils. Geological Society,London,Memoirs, 38(1): 45-58. [62] Jones C G,Lawton J H,Shachak M.1994. Organisms as ecosystem engineers. Ecosystem management. In: Samson F B,Knopf F L(eds). Ecosystem Management. Berlin: Springer,130-147. [63] Knaust D,Minter N J.2018. The fish swimming trace Undichna unisulca from the Silurian of Sweden: probably the oldest vertebrate locomotion trace fossil. Lethaia, 51(4): 469-472. [64] Knaust D,Warchoł M,Kane I A.2014. Ichnodiversity and ichnoabundance: revealing depositional trends in a confined turbidite system. Sedimentology, 61(7): 2218-2267. [65] Kobluk D R,James N P,Pemberton S G.2016. Initial diversification of macroboring ichnofossils and exploitation of the macroboring niche in the Lower Paleozoic. Paleobiology, 4(2): 163-170. [66] Łaska W,Rodríguez-Tovar F J,Uchman A.2017. Evaluating macrobenthic response to the Cretaceous-Palaeogene event: a high-resolution ichnological approach at the Agost section(SE Spain). Cretaceous Research, 70: 96-110. [67] Luzhnaya E A,Ivantsov A Y.2019. Skeletal nets of the Ediacaran fronds. Paleontological Journal, 53(7): 667-675. [68] MacGabhann B A,Schiffbauer J D,Hagadorn J W,Wagoner Roy P,Lynch E P,Morrison L,Murray J.2019. Resolution of the earliest metazoan record: differential taphonomy of Ediacaran and Paleozoic fossil molds and casts. Palaeogeography,Palaeoclimatology,Palaeoecology, 513: 146-165. [69] Malekzadeh M,Wetzel A.2020. Paleodictyon in shallow-marine settings-an evaluation based on Eocene examples from Iran. Palaios, 35(9): 377-390. [70] Maloof A C,Porter S M,Moore J L,Dudas F O,Bowring S A,Higgins J A,Fike D A,Eddy M P.2010. The earliest Cambrian record of animals and ocean geochemical change. Geological Society of America Bulletin, 122(11-12): 1731-1774. [71] Mángano M G,Buatois L A.2004. Reconstructing early Phanerozoic intertidal ecosystems: ichnology of the Cambrian Campanario Formation in northwest Argentina. Fossils and Strata, 51(51): 17-38. [72] Mángano M G,Buatois L A.2011. Timing of infaunalization in shallow-marine Early Paleozoic communities in Gondwanan settings: discriminating evolutionary and paleogeographic controls. Palaeontologia Electronica, 14(2): 9A-21. [73] Mángano M G,Buatois L A.2014. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proceedings Biological sciences, 281(1780): 20140038. [74] Mángano M G,Buatois L A.2016a. The Trace-Fossil Record of Major Evolutionary Events(Vol.1): Precambrian and Paleozoic. Berlin: Springer,1-358. [75] Mángano M G,Buatois L A.2016b. The Trace-Fossil Record of Major Evolutionary Events(Vol.2): Mesozoic and Cenozoic. Berlin: Springer,1-485. [76] Mángano M G,Buatois L A.2017. The Cambrian revolutions: trace-fossil record,timing,links and geobiological impact. Earth-Science Reviews, 173: 96-108. [77] Mángano M G,Buatois L A,Hofmann R,Elicki O,Shinaq R.2013. Exploring the aftermath of the Cambrian explosion: the evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeography,Palaeoclimatology,Palaeoecology, 374: 1-15. [78] Mángano M G,Ortega-Hernandez J,Pinuela L,Buatois L A,Rodriguez-Tovar F J,Garcia-Ramos J C.2020. Trace fossil evidence for infaunal moulting in a Middle Devonian non-trilobite euarthropod. Scientific Reports, 10(1): 5316. [79] Maples C G,Archer A W.1989. The potential of Paleozoic nonmarine trace fossils for paleoecological interpretations. Palaeogeography,Palaeoclimatology,Palaeoecology, 73(3-4): 185-195. [80] Marriott S B,Morrissey L B,Hillier R D.2009. Trace fossil assemblages in Upper Silurian tuff beds: evidence of biodiversity in the Old Red Sandstone of southwest Wales,UK. Palaeogeography,Palaeoclimatology,Palaeoecology, 274(3-4): 160-172. [81] McMahon W J,Liu A G,Tindal B H,Kleinhans M G.2020. Ediacaran life close to land: coastal and shoreface habitats of the Ediacaran macrobiota,the Central Flinders Ranges,South Australia. Journal of Sedimentary Research, 90(11): 1463-1499. [82] Minter N J,Buatois L A,Mángano M G,Davies N S,Gibling M R,MacNaughton R B,Labandeira C C.2017. Early bursts of diversification defined the faunal colonization of land. Nature Ecology & Evolution, 1(7): 1-10. [83] Moczydłowska M,Kear B P,Snitting D,Liu L,Lazor P,Majka J.2021. Ediacaran metazoan fossils with siliceous skeletons from the Digermulen Peninsula of Arctic Norway. Journal of Paleontology, 95(3): 440-475. [84] Morgan C A,Henderson C M,Pratt B R.2019. A giant protopaleodictyon from the Middle Cambrian of western Canada. Ichnos, 26(3): 216-223. [85] Olivero D.2003. Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin(southeastern France). Palaeogeography,Palaeoclimatology,Palaeoecology, 192(1): 59-78. [86] Orr P J.2001. Colonization of the deep-marine environment during the Early Phanerozoic: the ichnofaunal record. Geological Journal, 36(3-4): 265-278. [87] Pandey D K,Uchman A,Kumar V,Shekhawat R S.2014. Cambrian trace fossils of the Cruziana ichnofacies from the Bikaner-Nagaur Basin,north western Indian Craton. Journal of Asian Earth Sciences, 81: 129-141. [88] Parcha S,Singh B P.2010. Stratigraphic significance of the Cambrian ichnofauna of the Zanskar region,Ladakh Himalaya,India. Journal of the Geological Society of India, 75(3): 503-517. [89] Parcha S K,Pandey S.2011. Ichnofossils and their significance in the Cambrian successions of the Parahio Valley in the Spiti Basin,Tethys Himalaya,India. Journal of Asian Earth Sciences, 42(6): 1097-1116. [90] Plotnick R E.2007. Chemoreception,odor landscapes,and foraging in ancient marine landscapes. Palaeontologia Electronica, 10(1): 1-11. [91] Plotnick R E,Dornbos S Q,Chen J Y.2010. Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology, 36(2): 303-317. [92] Pu J P,Bowring S A,Ramezani J,Myrow P,Raub T D,Landing E,Mills A,Hodgin E,Macdonald F A.2016. Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology, 44(11): 955-958. [93] Rindsberg A K.2012. Ichnotaxonomy: finding patterns in a welter of information. In: Knaust D,Bromley R G(eds). Trace Fossils as Indicators of Sedimentary Environments. Amsterdam: Elsevier,45-78. [94] Rodríguez-Tovar F J,Piñuela L,García-Ramos J C.2016. Trace fossils assemblages from the Cenozoic “flysch units”of the Campo de Gibraltar Complex(Southern Spain). Ichnos, 23(1-2): 53-70. [95] Rogov V,Marusin V,Bykova N,Goy Y,Nagovitsin K,Kochnev B,Karlova G,Grazhdankin D.2012. The oldest evidence of bioturbation on Earth. Geology, 40(5): 395-398. [96] Scotese C R,Song H J,Mills B J,van der Meer D G.2021. Phanerozoic paleotemperatures: the earth’s changing climate during the last 540 million years. Earth-Science Reviews, 215: 103503. [97] Sedorko D,Netto R G,Horodyski R S.2019. Tracking Silurian-Devonian events and paleobathymetric curves by ichnologic and taphonomic analyzes in the southwestern Gondwana. Global and Planetary Change, 179: 43-56. [98] Seilacher A.1974. Flysch trace fossils: evolution of behavioural diversity in the deep-sea. Neues Jahrbuch für Geologie und Paläontologie,Monatshefte, 1974: 233-245. [99] Seilacher A.1999. Biomat-related lifestyles in the Precambrian. Palaios, 14(1): 86-93. [100] Seilacher A.2000. Ordovician and Silurian arthrophycid ichnostratigraphy. In: Worsley D(eds). Geological Exploration in Murzuq Basin. Amsterdam: Elsevier,237-258. [101] Seilacher A.2007. Trace fossil analysis. New York: Springer Science & Business Media,1-226. [102] Seilacher A. Pflüger F.1994. From biomats to benthic agriculture: a biohistoric revolution. In: Krumbein W E,Paterson D M. and Stal L J(eds). Biostabilization of Sediments. Universitat Oldenburg: Bibliotheks und Informations system. 97-105. [103] Seilacher A,Buatois L A,Mángano G M.2005. Trace fossils in the Ediacaran-Cambrian transition: behavioral diversification,ecological turnover and environmental shift. Palaeogeography,Palaeoclimatology,Palaeoecology, 227(4): 323-356. [104] Sepkoski J J Jr.1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1): 36-53. [105] Sepkoski J J Jr. 1996. Patterns of Phanerozoic extinction: a perspective from global data bases. In: Walliser O H(ed). Global Events and Event Stratigraphy in the Phanerozoic. Berlin,Heidelberg: Springer,35-51. [106] Sepkoski J J Jr.1997. Biodiversity: past,present,and future. Journal of Paleontology, 71(4): 533-539. [107] Sepkoski J J Jr,Sheehan P M. 1983. Diversification,faunal change,and community replacement during the Ordovician radiation. In: Tevesz M J S,McCall P M(eds). Biotic Interactions in Recent Fossil Benthic Communities. New York: Plenum,673-718. [108] Servais T,Harper D A T.2018. The Great Ordovician Biodiversification Event(GOBE): definition,concept and duration. Lethaia, 51(2): 151-164. [109] Servais T,Lehnert O,Li J,Mullins G L,Munnecke A,Nuetzel A,Vecoli M.2008. The Ordovician Biodiversification: revolution in the oceanic trophic chain. Lethaia, 41(2): 99-109. [110] Servais T,Owen A W,Harper D A T,Kröger B,Munnecke A.2010. The Great Ordovician Biodiversification Event(GOBE): the palaeoecological dimension. Palaeogeography,Palaeoclimatology,Palaeoecology, 294(3-4): 99-119. [111] Shahkarami S,Mángano M G,Buatois L A.2017. Discriminating ecological and evolutionary controls during the Ediacaran-Cambrian transition: trace fossils from the Soltanieh Formation of northern Iran. Palaeogeography,Palaeoclimatology,Palaeoecology, 476: 15-27. [112] Singh B P,Lokho K,Kishore N,Virmani N.2014. Early Cambrian ichnofossils from the Mussoorie syncline and revision of trace fossil biozonation of the Lesser Himalaya,India. Acta Geologica Sinica-English Edition, 88(2): 380-393. [113] Singh R H,Tovar F J R,Ibotombi S.2008. Trace fossils of the Upper Eocene-Lower Oligocene transition of the Manipur,Indo-Myanmar ranges(Northeast India). Turkish Journal of Earth Sciences, 17(4): 821-834. [114] Sprigg R C.1947. Early Cambrian(?)jellyfishes from the Flinders Ranges,South Australia. Transactions of the Royal Society of South Australia, 71(2): 212-224. [115] Stafford E S,Dietl G P,Gingras M P,Leighton L R.2015. Caedichnus,a new ichnogenus representing predatory attack on the gastropod shell aperture. Ichnos, 22(2): 87-102. [116] Stigall A L,Edwards C T,Freeman R L,Rasmussen C M Ø.2019. Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of Early Paleozoic building blocks. Palaeogeography,Palaeoclimatology,Palaeoecology, 530: 249-270. [117] Stigall A L,Freeman R L,Edwards C T,Rasmussen C M Ø.2020. A multidisciplinary perspective on the Great Ordovician Biodiversification Event and the development of the Early Paleozoic world. Palaeogeography,Palaeoclimatology,Palaeoecology, 543: 109521. [118] Stroud J T,Losos J B.2016. Ecological opportunity and adaptive radiation. Annual Review of Ecology,Evolution,and Systematics, 47: 507-532. [119] Tapanila L,Copper P.2002. Endolithic trace fossils in Ordovician-Silurian corais and stromatoporoids,Anticosti Island,eastern Canada. Acta Geologica Hispanica, 37(1): 15-20. [120] Taylor A M,Goldring R.1993. Description and analysis of bioturbation and ichnofabric. Journal of the Geological Society, 150(1): 141-148. [121] Toom U,Vinn O,Hints O.2019. Ordovician and Silurian ichnofossils from carbonate facies in Estonia: a collection-based review. Palaeoworld, 28(1-2): 123-144. [122] Tweedt S M,Erwin D H.2015. Origin of metazoan developmental toolkits and their expression in the fossil record. In: Ruiz-Trillo I,Nedelcu A M(eds). Evolutionary Transitions to Multicellular Life,Advances in Marine Genomics 2. Dordrecht: Springer,47-77. [123] Uchman A.2003. Trends in diversity,frequency and complexity of graphoglyptid trace fossils: evolutionary and palaeoenvironmental aspects. Palaeogeography,Palaeoclimatology,Palaeoecology, 192(1-4): 123-142. [124] Uchman A.2004. Phanerozoic history of deep-sea trace fossils. Geological Society,London,Special Publications, 228(1): 125-139. [125] Uchman A,Gadzicki A.2006. New trace fossils from the La Meseta Formation(Eocene)of Seymour Island,Antarctica. Polish Polar Research, 27(2): 153-170. [126] Uchman A,Wetzel A.2012. Deep-sea fans. In: Knaust D,Bromley R G(eds). Trace fossils as indicators of Sedimentary Environments. Amsterdam: Elsevier,643-671. [127] Uchman A,Drygant D,Paszkowski M,Porębski S J,Turnau E.2004. Early Devonian trace fossils in marine to non-marine redbeds in Podolia,Ukraine: palaeoenvironmental implications. Palaeogeography,Palaeoclimatology,Palaeoecology, 214(1-2): 67-83. [128] Vermeij G J.1977. The Mesozoic marine revolution: evidence from snails,predators and grazers. Paleobiology, 3(3): 245-258. [129] Vinn O,Wilson M A.2015. Symbiotic interactions in the Ordovician of Baltica. Palaeogeography,Palaeoclimatology,Palaeoecology, 436: 58-63. [130] Vinn O,Wilson M A,Toom U.2019. Earliest petroxestes borings from Sandbian(Earliest Late Ordovician)bryozoans of Northern Estonia. Palaios, 34(10): 453-457. [131] Wang Y,Wang X L,Wang Y.2015. Cambrian ichnofossils from the Zhoujieshan Formation(Quanji Group)overlying tillites in the northern margin of the Qaidam Basin,NW China. Journal of Earth Science, 26(2): 203-210. [132] Weber B,Steiner M,Zhu M Y.2007. Precambrian-Cambrian trace fossils from the Yangtze Platform(South China)and the early evolution of bilaterian lifestyles. Palaeogeography,Palaeoclimatology,Palaeoecology, 254(1-2): 328-349. [133] Wetzel A,Blechschmidt I,Uchman A,Matter A.2007. A highly diverse ichnofauna in Late Triassic deep-sea fan deposits of Oman. Palaios, 22(5): 567-576. [134] Wilson J P,Grotzinger J P,Fischer W W,Hand K P,Jensen S,Knoll A H,Abelson J,Metz J M,McLoughlin N,Cohen P A,Tice M M.2012. Deep-water incised valley deposits at the Ediacaran-Cambrian boundary in Southern Namibia contain abundant Treptichnus Pedum. Palaios, 27(4): 252-273. [135] Wilson M A,Palmer T J.2006. Patterns and processes in the Ordovician bioerosion revolution. Ichnos, 13(3): 109-112. [136] Wood R,Erwin D H.2018. Innovation not recovery: dynamic redox promotes metazoan radiations. Biological Reviews, 93(2): 863-873. [137] Wray G A.2015. Molecular clocks and the early evolution of metazoan nervous systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1684): 20150046. [138] Xiao S H,Laflamme M.2009. On the eve of animal radiation: phylogeny,ecology and evolution of the Ediacara biota. Trends in Ecology & Evolution, 24(1): 31-40. [139] Yang B,Steiner M,Zhu M Y,Li G X,Liu J N,Liu P J.2016. Transitional Ediacaran-Cambrian small skeletal fossil assemblages from South China and Kazakhstan: implications for chronostratigraphy and metazoan evolution. Precambrian Research, 285: 202-215. [140] Zhang L J,Fan R Y,Gong Y M.2015. Zoophycos macroevolution since 541 Ma. Scientific Reports, 5(1): 1-10. [141] Zhang X L,Shu D G.2014. Causes and consequences of the Cambrian explosion. Science China Earth Sciences, 57(5): 930-942. [142] Zhang X L,Shu D G.2021. Current understanding on the Cambrian Explosion: questions and answers. PalZ,1-20. [143] Zhu M Y.1997. Precambrian-Cambrian trace fossils from eastern Yunnan,China: implications for Cambrian Explosion. Bulletin of National Museum of Natural Science, 10: 275-312. [144] Zhu M Y,Zhuravlev A Y,Wood R A,Zhao F C,Sukhov S S.2017. A deep root for the Cambrian Explosion: implications of new bio- and chemostratigraphy from the Siberian Platform. Geology, 45(5): 459-462. [145] Zhuravlev A Y,Wood R A.2018. The two phases of the Cambrian Explosion. Scientific Reports, 8(1): 16656.