Microfacies of carbonate rocks and sea-level changes in the Lower to Middle Ordovician Zitai Formation of southern Anhui Province
Luan Xiaocong1,2, Liu Jianbo3, Zhan Renbin1, Wu Rongchang1
1 State Key Laboratory of Palaeobiology and Stratigraphy,Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences,Nanjing 210008,Jiangsu 2 University of Chinese Academy of Sciences,Beijing 100049 3 School of Earth and Space Sciences,Peking University,Beijing 100871
Abstract:The Lower to Middle Ordovician Zitai Formation,a unique lithologic unit formed during the critical period of the Great Ordovician Biodiversification Event(GOBE),contains some important information about this major biotic event. Based on detailed investigation and sampling in the field and observation under the microscope in the lab,nine carbonate microfacies were distinguished in the Zitai Formation at Dingxiang section of Shitai County and Hongjia section of Chizhou County,southern Anhui Province,East China,named as the MF-1 calcareous shale,the MF-2 argillaceous mudstone,the MF-3 mudstone,the MF-4 gastropod-ostracod wackestone,the MF-5 calthrop-bearing wackestone,the MF-6 argillaceous bioclast-bearing wackestone,the MF-7 argillaceous bioclastic wackestone,the MF-8 bioclastic wackestone and the MF-9 bioclastic packstone. These microfacies were deposited in deep subtidal and adjacent zones with low amplitude of changes in water depths. Taking into account of some other evidences that we observed in the field,we proposed that depositional environment of the Zitai Formation at Dingxiang section was deeper than that at Hongjia section. Five transgressive events in the Zitai Formation were recognized at both sections. All these transgressions can be precisely correlated between the studied sections and the sections on the Yangtze Platform,as well as on some other palaeoplates. Thus the changes in deposition of the Zitai Formation in the Lower Yangtze region were controlled by regional and even global eustatic sea-level fluctuations.
Luan Xiaocong,Liu Jianbo,Zhan Renbin et al. Microfacies of carbonate rocks and sea-level changes in the Lower to Middle Ordovician Zitai Formation of southern Anhui Province[J]. JOPC, 2015, 17(2): 249-264.
安太庠. 1987. 中国南部早古生代牙形石[M]. 北京:北京大学出版社,16-83. 陈朋飞,詹仁斌. 2006. 扬子区下、中奥陶统大湾组及其同期地层[J]. 地层学杂志,30(1):11-20. 陈旭,阮亦萍,彭善池,等. 2001. 中国古生代气候演变[M]. 北京:科学出版社,14-20. 董卫平. 1997. 贵州省岩石地层[M]. 湖北武汉:中国地质大学出版社,48-148. 冯增昭,彭勇民,金振奎,等. 2001. 中国南方早奥陶世岩相古地理[J]. 古地理学报,3(2):11-22. 高振家,陈克强,魏家庸. 2000. 中国岩石地层辞典[M]. 湖北武汉:中国地质大学出版社,1-628. 葛祥英,牟传龙,周恳恳,等. 2013. 湖南地区晚奥陶世桑比期—凯迪期早期沉积特征及沉积模式[J]. 古地理学报,15(1):59-68. 胡修棉,王成善,李祥辉,等. 2006. 藏南上白垩统深水海相红层:岩石类型、沉积环境与颜色成因[J]. 中国科学(D辑),36(9):811-821. 廖翰卿,刘建波,吴荣昌,等. 2013. 华南上扬子区下奥陶统红花园组顶界的穿时性[J]. 古生物学报,52(1):15-31. 刘建波. 2006. 华南早奥陶世生物大辐射期间的海平面变化[A]. 见:戎嘉余(主编). 生物的起源、辐射与多样性演变:华夏化石记录的启示[M]. 北京:科学出版社,335-360,875-877. 刘建波,江崎洋一,足立奈津子,等. 2013. 华南早奥陶世生物礁:类型和分布[A]. 见: 中国石油大学(北京). 第一届国际古地理学会议论文摘要集[C]. 中国石油大学(北京):54-55. 穆恩之,朱兆玲,陈均远,等. 1979. 西南地区的奥陶系[A]. 见:中国科学院南京地质与古生物研究所. 西南地区碳酸盐岩生物地层[M]. 北京:科学出版社,108-154. 苏文博. 2001. 上扬子地台东南缘奥陶纪层序地层学及海平面变化研究[M]. 北京:地质出版社,1-106. 汪啸风,陈旭,陈孝红,等. 1996a. 中国地层典·奥陶系[M]. 北京:地质出版社,1-126. 汪啸风,李志明,陈建强,等. 1996b. 华南早奥陶世海平面变化及其对比[J]. 华南地质与矿产,(3):1-11. 王英华,张秀莲,迟元苓. 1990. 化石岩石学[M]. 北京:中国矿业大学出版社,1-123. 温俊君,刘建波. 2009. 碳酸盐岩生屑颗粒定量研究:点计数法的理论分析与应用[J]. 古地理学报,11(5):581-592. 吴荣昌. 2011. 华南扬子区下、中奥陶统紫台组的牙形类动物群[D]. 江苏南京:中国科学院南京地质古生物研究所,5-50. 吴荣昌,王志浩. 2008. 安徽石台下、中奥陶统紫台组的牙形刺[J]. 微体古生物学报, 25(4):364-383. 吴荣昌,詹仁斌,李贵鹏,等. 2007. 浅论华南扬子区下、中奥陶统紫台组[J]. 地层学杂志,31(4):325-332. 张允白. 2003. 扬子陆块中奥陶世早期鹦鹉螺多样性及古水深学研究[D]. 江苏南京:中国科学院南京地质古生物研究所,7-32. 张允白,周志毅,张俊明. 2002. 扬子陆块早奥陶世末期—中奥陶世Darriwilian初期沉积分异[J]. 地层学杂志,26(4):302-314. 周名魁,王汝植,李志明,等. 1993. 中国南方奥陶—志留纪岩相古地理与成矿作用[M]. 北京:地质出版社,1-111. 周志毅,袁文伟,周志强. 2006. 华南陆块奥陶纪三叶虫的辐射[A]. 见:戎嘉余(主编). 生物的起源、辐射与多样性演变:华夏化石记录的启示[M]. 北京:科学出版社,197-213. 朱忠德,胡明毅,肖传桃,等. 1995. 鄂西南湘西北地区上震旦统至奥陶系石油地质研究[M]. 北京:地质出版社,29-42. 中国科学院南京地质古生物研究所. 1974. 西南地区地层古生物图册[M]. 北京:科学出版社, 23-31. Berner R A. 2006. Geocarbsulf:Acombined model for Phanerozoic atmospheric O2 and CO2[J]. Geochimica et Cosmochimica Acta,70:5653-5664. Chen X,Rong J Y,Wang X F, et al. 1995. Correlation of the Ordovician rocks of China: Charts and Explanatory Notes[J]. International Union of Geological Sciences Publication,31:1-104. Flügel E. 2010. Microfacies of Carbonate Rocks:Analysis,Interpretation and Application(2nd Edition)[M]. Springer-Verlag Berlin Heidelberg:1-929. Kiipli E,Kallaste T,Kiipli T. 2008. Hydrodynamic control of sedimentation in the Ordovician(Arenig-Caradoc)Baltic Basin[J]. Lethaia,41:127-137. Kiipli E,Kiipli T,Kallaste T, et al. 2010. Distribution of phosphorus in the Middle and Upper Ordovician Baltoscandian carbonate paleobasin[J]. Estonian Journal of Earth Science,59(4):247-255. Liu J B. 1998. Lower and Middle Ordovician cyclostratigraphy and radiolarian fauna in North China[D]. Osaka City University: 1-193. Liu J,Zhan R. 2009. Temporal distribution of diagnostic biofabrics in the Lower and Middle Ordovician in North China: Clues to the geobiology of the Great Ordovician Biodiversification Event[J]. Acta Geologica Sinica(English Edition),83(3):513-523. Nielsen A T. 2004. Ordovician sea level changes: A Baltoscandian perspective[A]. In: Webby B D,Paris F,Droser M L,et al(eds). The Great Ordovician Biodiversification Event[C]. New York:Columbia University Press,84-93. Ross J R P,Ross C A. 1992. Ordovician sea level fluctuations[A]. In:Webby B D,Laurie J R(eds). Global Perspectives on Ordovician Geology[M]. Balkema,Rotterdam:327-335. Schlager W. 1981. The paradox of drowned reefs and carbonate platforms[J]. Bulletin of the Geological Society of America,92(4):197-211. Sepkoski J J Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity Ⅱ:Early Phanerozoic families and multiple equilibria[J]. Paleobiology,5(3),222-251. Sepkoski J J Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record[J]. Paleobiology,7(1): 36-53. Turvey S T,Zhou Z Y. 2004. Arenig trilobite association from the Jiangnan Transitional Belt of Northern Hunan,China[J]. Journal of Asian Earth Sciences,23:47-61. Webby B D. 2004. Introduction[A]. In:Webby B D,Paris F,Droser M L, et al(eds). The Great Ordovician Biodiversification Event[M]. New York:Columbia University Press,1-37. Webby B D,Cooper R A,Bergstrm S M, et al. 2004. Stratigraphic framework and time slices[A]. In:Webby B D,Paris F,Droser M L,et al(eds). The Great Ordovician Biodiversification Event[M]. New York:Columbia University Press,41-47. Wilde P. 1987. Model of progressive ventilation of the Late Precambrian-Early Paleozoic ocean[J]. American Journal of Science,287:442-459. Wu R C,Svend S,Wang Z H. 2012. Conodontophorid biodiversification during the Ordovician in South China[J]. Lethaia,45:432-442. Yan K,Servais T,Li J, et al. 2011. Biodiversity patterns of Early-Middle Ordovician marine microphytoplankton in South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,299(1):318-334. Young G C,Laurie J R. 1996. An Australian Phanerozoic Timescale[M]. Melbourne:Oxford University Press,1-286. Zhan R B,Rong J Y,Cheng J H, et al. 2005. Early-Mid Ordovician brachiopod diversification in South China[J]. Science in China Series D:Earth Sciences,48(5):662-675. Zhan R B,Jin J S,Rong J Y. 2006. β ̄diversity fluctuations in Early-Mid Ordovician brachiopod communities of South China[J]. Geological Journal,41(3-4):271-288. Zhang Y D,Chen X,Goldman D. 2007. Diversification patterns of Early and Mid Ordovician graptolites in South China[J]. Geological Journal,42(3-4):315-337. Zhang T G,Shen Y N,Algeo T J. 2010. High-resolution carbon isotopic records from the Ordovician of South China:Links to climatic cooling and the Great Ordovician Biodiversification Event(GOBE)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,289(1):102-112. Zhou Z Y,Bergstrm J,Zhou Z Q, et al. 2011. Trilobite biofacies and palaeogeographic development in the Arenig(Ordovician)of the Yangtze Block,China[J]. Palaeoworld,20(1):15-45.张西娟