Palaeoenvironment of the Datangpo Formation of Nanhua System in Xiaochayuan Manganese Deposit in Xiushan area of Chongqing
Ma Zhixin1, Luo Liang1, Liu Xiting2, Liu Wei1, Sun Zhiming1
1 Chengdu Center,China Geological Survey,Chengdu 610081,Sichuan; 2 Key Laboratory of Marine Geology and Environment, Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,Shandong
Abstract:In order to provide a new understanding of sedimentary tectonic setting of the Nanhua system for manganese ore exploration in Chongqing-Hubei-Hunan area,we carried out sedimentological and geochemical analyses of the Qianzimen and Datangpo Formations of Nanhua System from Core ZK0606 at Xiaochayuan Manganese Deposit in Xiushan area of Chongqing. Based on the sedimentological analysis results,three kinds of sedimentary facies were distinguished,including shallow glacial marine,limited marginal basin and shallow shelf. The geochemical analysis data of higher total REE,LREE-rich,with a negative Eu anomaly,ratios of Al2O3/(Al2O3+Fe2O3)and Al/(Al+Fe+Mn)reflect that the Datangpo Formation deposited in a passive continental margin. The trace element content and ratios(U,V,Mo,V/Cr)show that the Member 1 of Datangpo Formation formed in the anoxic environment,with a gradual transition to oxic environments in the Member 2 of Datangpo Formation. The Al/Ca ratios and the chemical index of alteration(CIA)indicate that the chemical weathering and terrigenous supply were gradually increased from bottom to top, correspondind to the end of Sturtian glaciation,global warming and sea level rise. Based on the above analyses,it is indicated that the Manganese ore mainly formed in limited marginal basin with relatively deep water and anoxic conditions during the depositional period of lower section of the Member 1 of Datangpo Formation.
Ma Zhixin,Luo Liang,Liu Xiting et al. Palaeoenvironment of the Datangpo Formation of Nanhua System in Xiaochayuan Manganese Deposit in Xiushan area of Chongqing[J]. JOPC, 2016, 18(3): 473-486.
[1] 安正泽,张仁彪,陈甲才,覃英,潘文,吴桂武,彭乾云,郑超,张飞飞,朱祥坤,王海宾. 2014. 贵州省松桃县道坨超大型锰矿床的发现及其成因探讨. 矿床地质,33(4):870-884. [An Z Z,Zhang R B,Chen J C,Qin Y,Pan W,Wu G W,Peng Q Y,Zheng C,Zhang F F,Zhu X K,Wang H B. 2014. Geological and geochemical characteristics of Daotuo superlarge manganese ore deposit in Songtao County of Guizhou Province:Constraint on formation mechanism of Mn-carbonate ores. Mineral Deposits,33(4):870-884] [2] 陈多福,陈先沛. 1992. 贵州省松桃热水沉积锰矿的地质地球化学特征. 沉积学报,10(4):35-43. [Chen D F,Chen X P. 1992. Geological and geochemical characteristices of Songtao hydrothermal sedimentary manganese deposits,Guizhou. Acta Sedimentologica Sinica,10(4):35-43] [3] 储雪蕾,李任伟,张同钢,张启锐. 2001. 大塘坡期锰矿层中黄铁矿异常高的 δ 34 S 值的意义. 矿物岩石地球化学通报,20(4):320-322. [Chu X L,Li R W,Zhang T G,Zhang Q R. 2001. Implication of ultra-high δ 34 S values of pyrite in manganese mineralization beds of Datangpo stage. Bulletin of Mineralogy Petrology and Geochemistry,20(4):320-322] [4] 戴传固. 2010. 黔东及邻区地质构造特征及其演化. 北京:中国地质大学博士学位论文,1-148. [Dai C G. 2010. Geologic character and tectonic evolution of the East Guizhou and its adjacent region. Beijing:China University of Geoscience(Beijing) ,1-148] [5] 冯洪真,Erdtmann B D,王海峰. 2000. 上扬子区早古生代全岩 Ce 异常与海平面长缓变化. 中国科学D 辑:地球科学,30(1):66-72. [Feng H Z,Erdtmann B D,Wang H F. 2000. Ce anomaly in Paleozoic Yangtze area and long changes in sea level. Science in China Series D: Earth Sciences, 30(1):66-72] [6] 冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘,10(4):539-544. [Feng L J,Chu X L,Zhang Q R,Zhang T G. 2003. CIA(Checical index of alteration)and its applications in the Neoproterozoic clastic rocks. Earth Science Frontiers,10(4):539-544] [7] 付勇,徐志刚,裴浩翔,江冉. 2014. 中国锰矿成矿规律初探. 地质学报,88(12):2192-2207. [Fu Y,Xu Z G,Pei H X,Jiang R. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica,88(12):2192-2207] [8] 何明华. 1997. 贵州东部及邻区震旦纪大塘坡期事件沉积与地层对比. 贵州地质,14(1):21-29. [He M H. 1997. Event deposition and stratigraphic correlation of Sinian Datangpo Time in eastern Guizhou and its neighbouring regions. Guizhou Geology,14(1):21-29] [9] 何志威,杨瑞东,高军波,程伟,刘帅,张峰玮. 2014. 贵州松桃道坨锰矿含锰岩系地球化学特征和沉积环境分析. 地质论评,60(5):1061-1075. [He Z W,Yang R D,Gao J B,Cheng W,Liu S,Zhang F W. 2014. The geochemical characteristics and sedimentary environment of manganese-bearing rock series of Daotuo Manganese Deposit,Songtao County of Guizhou Province. Geological Review,60(5):1061-1075] [10] 侯宗林,薛友智,黄金水,林友焕,刘红军,姚敬劬,朱恺军. 1997. 扬子地台周边锰矿. 北京:冶金工业出版社. [Hou Z L,Xue Y Z,Huang J S,Lin Y H,Liu H J,Yao J Q,Zhu K J. 1997. Mn Ore in the Peripheral Area of Yangtze Platform. Beijing:Metallurgical Industry Press] [11] 李献华,李武显,何斌. 2012. 华南陆块的形成与 Rodinia 超大陆聚合—裂解:观察,解释与检验. 矿物岩石地球化学通报,31(6):543-559. [Li X H,Li W X,He B. 2012. Building of the South China Block and its relevance to assembly and breakup of Rodinia supercontinent:Observations,interpretations and tests. Bulletin of Mineralogy Petrology and Geochemistry,31(6):543-559] [12] 林治家,陈多福,刘芊. 2008. 海相沉积氧化还原环境的地球化学识别指标. 矿物岩石地球化学通报,27(1):72-80. [Lin Z J,Chen D F,Liu Q. 2008. Geochemical indices for redox conditions of marine sediments. Bulletin of Mineralogy Petrology and Geochemistry,27(1):72-80] [13] 刘巽锋,胡肇荣,曾励训,郑光夏,汪成元. 1983. 贵州震旦纪锰矿沉积相特征及其成因探讨. 沉积学报,1(4):106-116. [Liu X F,Hu Z R,Zeng L X,Zheng G X,Wang C Y. 1983. Origin and characteristics of sedimentary facies of Sinian Manganese deposits in Guizhou. Acta Sedimentologica Sinica,1(4):106-116] [14] 覃英,周琦,张遂. 2005. 黔东北地区南华纪锰矿基本特征. 贵州地质,22(4):246-251. [Qin Y,Zhou Q,Zhang S. 2005. Elementary properties of Manganese deposits of Nanhua Period in the northeastern Guizhou. Guizhou Geology,22(4):246-251] [15] 田洋,赵小明,王令占,涂兵,谢国刚,曾波夫. 2015. 鄂西南利川三叠纪须家河组地球化学特征及其对风化、物源与构造背景的指示. 岩石学报,31(1):261-272. [Tian Y,Zhao X M,Wang L Z,Tu B,Xie G G,Zeng B F. 2015. Geochemistry of clastic rocks from the Triassic Xujiahe Formation,Linchuan area,southwestern Hubei:Implications for weathering,provenance and tectonic setting. Acta Petrologica Sinica,31(1):261-272] [16] 汪正江,王剑,江新胜,孙海清,高天山,陈建书,邱艳生,杜秋定,邓奇,杨菲. 2015. 华南扬子地区新元古代地层划分对比研究新进展. 地质论评,61(1):1-22. [Wang Z J,Wang J,Jiang X S,Sun H Q,Gao T S,Chen J S,Qiu Y S,Du Q D,Deng Q,Yang F. 2015. New progress for the stratigraphic division and correlation of Neoproterozoic in Yangtze Block,South China. Geological Review,61(1):1-22] [17] 王剑. 2000. 华南新元古代裂谷盆地演化:兼论与 Rodinia 解体的关系. 北京:地质出版社. [Wang J. 2000. Neoproterozoic rifting history of South China:Significance to Rodinia Breakup. Beijing:Geological Publishing House] [18] 王剑,潘桂棠. 2001. 华南新元古代裂谷盆地演化:Rodinia 超大陆解体的前奏. 矿物岩石,21(3):135-145. [Wang J,Pan G T. 2001. Neoprotezoic rifting of South China:Significance to Rodinia breakup. Journal of Mineralogy and Petrology,21(3):135-145] [19] 王剑,段太忠,谢渊,汪正江,郝明,刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报,31(11):1739-1750. [Wang J,Duan T Z,Xie Y,Wang Z J,Hao M,Liu W. 2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geologcal Bulletin of China,31(11):1739-1750] [20] 王砚耕. 1990. 一个浅海裂谷盆地的古老热水沉积锰矿:以武陵山震旦纪锰矿为例. 沉积与特提斯地质,(1):38-46. [Wang Y G. 1990. Old hot brine Manganese deposits in a shallow sea rift basin:An example from the Sinian Manganese deposits in the Wuling Mountain area. Sedimentary Geology and Tethyan Geology,(1):38-46] [21] 王自强,尹崇玉,高林志,唐烽. 2009. 黔南—桂北地区南华系化学地层特征. 地球学报,30(4):465-474. [Wang Z Q,Yin C Y,Gao L Z,Tang F. 2009. Chemostratigraphic characteristics of the Nanhua System in southern Guizhou-northern Guangxi Area. Acta Geoscientica Sinica,30(4):465-474] [22] 许效松,黄慧琼,刘宝珺. 1991. 上扬子地块早震旦世大塘坡期锰矿成因和沉积学. 沉积学报,9(1):63-71. [Xu X S,Huang H Q,Liu B J. 1991. The sedimentology and origin of Early Sinian manganese deposits from the Datangpo Formation,South China. Acta Sedimentologica Sinica,9(1):63-71] [23] 杨瑞东,欧阳自远,朱立军,姜立君,张位华,高慧. 2002. 早震旦世大塘坡期锰矿成因新认识. 矿物学报,22(4):329-334. [Yang R D,Ouyang Z Y,Zhu L J,Jiang L J,Zhang W H,Gao H. 2002. A new understanding of manganese carbonate deposits in early Sinian Datangpo Stage. Acta Mineralogica Sinica,22(4):329-334] [24] 杨绍祥,劳可通. 2006. 湘西北锰矿床成矿模式研究:以湖南花垣民乐锰矿床为例. 沉积与特提斯地质,26(2):1-10. [Yang S X,Lao K T. 2006. Mineralization model for the manganese deposits in northwestern Hunan:An example from Minle manganese deposit in Huayuan,Hunan. Sedimentary Geology and Tethyan Geology,26(2):1-10] [25] 姚敬劬,王六明,苏长国,张清才. 1995. 扬子地台南缘及其邻区锰矿研究. 北京:冶金工业出版社. [Yao J Q,Wang L M,Su C G,Zhang Q C. 1995. The Studying of Mn Ore in South Margin of Yangtze Platform. Beijing:Metallurgical Industry Press] [26] 伊海生,林金辉,赵西西,周恳恳,李军鹏,黄华谷. 2008. 西藏高原沱沱河盆地渐新世—中新世湖相碳酸盐岩稀土元素地球化学特征与正铕异常成因初探. 沉积学报,26(1):1-10. [Yi H S,Lin J H,Zhao X X,Zhou K K,Li J P,Huang H G. 2008. Geochemistry of rare earth elements and origin of positive Europium anomaly in Miocene-Oligocene lacustrine carbonates from Tuotuohe Basin of Tibetan Plateau. Acta Sedimentologica Sinica,26(1):1-10] [27] 尹崇玉,王砚耕,唐烽,万渝生,王自强,高林志,邢裕盛,刘鹏举. 2006. 贵州松桃南华系大塘坡组凝灰岩锆石 SHRIMP Ⅱ U-Pb 年龄. 地质学报,80(2):273-278. [Yin C Y,Wang Y G,Tang F,Wan Y S,Wang Z Q,Gao L Z,Xing Y S,Liu P J. 2006. SHRIMP Ⅱ U-Pb zircon date from the Nanhua Datangpo Formation in Songtao County,Guizhou Province. Acta Geologica Sinica,80(2):273-278] [28] 赵东旭. 1990. 震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积. 地质科学,(2):149-158. [Zhao D X. 1990. Intraclastic structures and gravity flow sedimentation of rhodochrosite ore in Sinian Datangpo Formation. Chinese Journal of Geology,(2):149-158] [29] 郑永飞. 2003. 新元古代岩浆活动与全球变化. 科学通报,48(16):1705-1720. [Zheng Y F. 2003. Neoproterozoic magmatic activity and global change.Chinese Science Bulletin,48(16):1705-1720] [30] 周炼,苏洁,黄俊华,颜佳新,解习农,高山,戴梦宁,腾格尔. 2011. 判识缺氧事件的地球化学新标志:钼同位素. 中国科学:地球科学,41(3):309-319. [Zhou L,Su J,Huang J H,Yan J X,Xie X N,Gao S,Dai M N,Teng G E. 2011. A new paleoenvironmental index for anoxic events:Mo isotopes in black shales from Upper Yangtze marine sediments. Scientia Sinica Terrae,41(3):309-319] [31] 周琦,杜远生,覃英. 2013. 古天然气渗漏沉积型锰矿床成矿系统与成矿模式:以黔湘渝毗邻区南华纪 “大塘坡式”锰矿为例. 矿床地质,32(3):457-466. [Zhou Q,Du Y S,Qin Y. 2013. Ancient natural gas seepage sedimentary-type manganese metallogenic system and ore-forming model:A case study of‘Datangpo type’manganese deposits formed in rift basin of Nanhua Period along Guizhou-Hunan-Chongqing border area. Mineral Deposits,32(3):457-466] [32] 周琦,杜远生,王家生,彭加强. 2007. 黔东北地区南华系大塘坡组冷泉碳酸盐岩及其意义. 地球科学,32(3):339-346. [Zhou Q,Du Y S,Wang J S,Peng J Q. 2007. Characteristics and significance of the cold seep carbonates from the Datangpo Formation of the Nanhua Series in the Northeast Guizhou. Earth Science,32(3):339-346] [33] 朱祥坤,彭乾云,张仁彪,安正泽,张飞飞,闫斌,李津,高兆富,覃英,潘文. 2013. 贵州省松桃县道坨超大型锰矿床地质地球化学基本特征. 地质学报,87(9):1335-1348. [Zhu X K,Peng Q Y,Zhang R B,An Z Z,Zhang F F,Yan B,Li J,Gao Z F,Qin Y,Pan W. 2013. Geological and geochemical characteristics of the Daotuo Super-Large Manganese Ore Deposit at Songtao Country in Guizhou Province. Acta Geologica Sinica,87(9):1335-1348] [34] Baltuck M. 1982. Provenance and distribution of Tethyan pelagic and hemipelagic siliceous sediments,Pindos Mountains,Greece. Sedimentary Geology,31(1):63-88. [35] Bhatia M R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks:Provenance and tectonic control. Sedimentary Geology,45(1):97-113. [36] Bock B,McLennan S,Hanson G. 1998. Geochemistry and provenance of the Middle Ordovician Austin Glen Member(Normanskill formation)and the Taconian orogeny in New England. Sedimentology,45(4):635-655. [37] Chen X,Li D,Ling H F,Jiang S Y. 2008. Carbon and sulfur isotopic compositions of basal Datangpo Formation,northeastern Guizhou,South China:Implications for depositional environment. Progress in Natural Science,18(4):421-429. [38] Clift P D,Wan S,Blusztajn J. 2014. Reconstructing chemical weathering,physical erosion and monsoon intensity since 25,Ma in the northern South China Sea:A review of competing proxies. Earth-Science Reviews,130:86-102. [39] Cullers R L,Podkovyrov V N. 2000. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia,Russia:Implications for mineralogical and provenance control,and recycling. Precambrian Research,104(1-2):77-93. [40] Feng L J,Chu X L,Zhang Q R,Zhang T G,Li H,Jiang N F. 2004. New evidence of deposition under cold climate for the Xieshuihe Formation of the Nanhua System in northwestern Hunan,China. Chinese Science Bulletin,49(13):1420-1427. [41] Jones B,Manning D A C. 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chemical Geology,111(1-4):111-129. [42] Li C,Love G D,Lyons T W,Scott C T,Feng L J,Huang J,Chang H J,Zhang Q R,Chu X L. 2012. Evidence for a redox stratified Cryogenian marine basin,Datangpo Formation,South China. Earth and Planetary Science Letters,331:246-256. [43] Lyons T W,Anbar A D,Severmann S,Scott C,Gillet B C. 2009. Tracking euxinia in the ancient ocean:A multiproxy perspective and Proterozoic case study. Annual Review of Earth and Planetary Sciences,37(1):507-534. [44] Murray R W. 1994. Chemical criteria to identify the depositional environment of chert:General principles and applications. Sedimentary Geology,90(3-4):213-232. [45] Nesbitt H W,Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature,299(5885):715-717. [46] Nesbitt H W,Young G M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology,97(2):129-147. [47] Och L M,Shields-Zhou G A. 2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling. Earth-Science Reviews,110(1-4):26-57. [48] Panahi A,Young G M,Rainbird R H. 2000. Behavior of major and trace elements(including REE)during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie,Québec,Canada. Geochimica et Cosmochimica Acta,64(13):2199-2220. [49] Taylor S R,McLennan S M,Armstrong R L,Tarney J. 1981. The composition and evolution of the continental crust:Rare earth element evidence from sedimentary rocks:Discussion. Philosophical Transactions of the Royal Society B Biological Sciences,301(1461):381-399. [50] Tribovillard N,Algeo T J,Lyons T,Riboulleau A. 2006. Trace metals as paleoredox and paleoproductivity proxies:An update. Chemical Geology,232(1):12-32. [51] Zhou C M,Tucker R,Xiao S H,Peng Z X,Yuan X L,Chen Z. 2004. New constraints on the ages of Neoproterozoic glaciations in south China. Geology,32(5):437-440.