Clots built by photosynthetic biofilms: Evidences from thrombolite bieherms of the Changshan Formation of Cambrian Furongian in Liaodong Peninsula
Mei Ming-Xiang1,2, Khalid Latif1, Liu Li1, Meng Qing-Fen1
1 School of Earth Sciences and Natural Resources,China University of Geosciences,Beijing 100083,China; 2 State Key Laboratory of Biogeology and Environmental Geology,China University of Geosciences,Beijing 100083,China
Abstract:Thrombolites are marked by non-layer fabrics,which are distinct from stromatolites;the key microstructure of thrombolites are mesoclots that produce clotted fabrics. Diffusely clotted micrite that commonly make up the mesoclots likely represent extracelluar polymeric substances(EPSs)calcification. However,its precise origin and formative processes are not clear due to absence of direct evidence of microbial activities. Thrombolite bioherms occur in the top of the Changshan Formation of the Cambrian Furongian at the Jinzhouwan and Tianshifu sections in the Liaodong Peninsula. Thrombolite bioherms were deposited in the forced regressive system tract of a third-order depositional sequence. Diffusely clotted micrites with the size of micrometers are fundamental fabrics of these thrombolites. Importantly and particularly,the sheath fossils of filamental cyanobateria are preserved,suggesting a biological origin of photosynthetic biofilms. A great challenge is to interpret the ancient clots and their detail formative processes through the filter of diagenesis. Calcification of cyanobacteria biofilms also remains poorly understood. The preservation of cyanobacteria sheath fossils within thrombolite colts in the Furongian Changshan Formation in the Liaodong Peninsula suggests that the colts were formed by photosynthetic biofilms. Furthermore,the clots within thrombolites are commonly symbiosis with other types of carbonate grains such as benthic ooid,cortoid,and trilobite fossil fragment,as well as radiated calcite fabric around these carbonate grains,which indicate that the thrombolites of the Changshan Formation probably resulted from complex calcification of EPSs of multiple biofilms within the relative thick microbial mat.
Mei Ming-Xiang,Khalid Latif,Liu Li et al. Clots built by photosynthetic biofilms: Evidences from thrombolite bieherms of the Changshan Formation of Cambrian Furongian in Liaodong Peninsula[J]. JOPC, 2019, 21(2): 254-277.
[1] 陈金勇,韩作振,范洪海,迟乃杰. 2014a. 鲁西寒武系第三统张夏组凝块石特征及其形成环境研究. 沉积学报, 32(3): 494-502. [Chen J Y,Han Z Z,Fan H H,Chi N J.2014a. Characteristics and sedimentary environment of thrombolite in the Zhangxia Formation(Third Series of Cambrian),Shandong Province. Acta Sedimentologica Sinica, 32(3): 494-502] [2] 陈金勇,韩作振,范洪海,陈吉涛,迟乃杰. 2014b. 鲁西寒武系凝块石特征及其形成机制的探讨. 地质学报, 88(6): 967-978. [Chen J Y,Han Z Z,Fan H H,Chen J T,Chi N J.2014b. Characteristics and formation mechanism of Cambrian thrombolite in western Shandong Province. Acta Geologica Sinica, 88(6): 967-978] [3] 陈小炜,牟传龙,葛祥英,康健威,周肯肯. 2013. 华北地区寒武系第三统鲕粒滩的展布特征及其控制因素. 石油天然气学报, 34(11): 8-14. [Chen X W,Mou C L,Ge X Y,Kang J W,Zhou K K.2013. Distributing characteristics and controlling factors for oolitic shoal of the Third Series of Cambrian in North China. Journal of Oil and Gas Technology, 34(11): 8-14] [4] 杜汝霖. 1992. 前寒武纪古生物学及地史学. 北京: 地质出版社,1-193. [Du R L.1992. Precambrian Paleobiology and Geohistory. Beijing: Geological Publishing House,1-193] [5] 冯增昭,王英华,张吉森,左文岐,张秀莲,洪国良,陈继新,吴胜和,陈玉田,迟元苓,杨承运. 1990. 华北地台早古生代岩相古地理. 北京: 石油工业出版社,28-48. [Feng Z Z,Wang Y H,Zhang J S,Zuo W Q,Zhang X L,Hong G L,Chen J X,Wu S H,Chen Y T,Chi Y L,Yang C Y.1990. Lithofacoes Paleogeography of the Early Paleozoic of North China Platform. Beijing: Petroleum Industry Press,28-48] [6] 冯增昭,彭永民,金振奎,鲍志东. 2004. 中国寒武纪和奥陶纪岩相古地理. 北京: 石油工业出版社,112-121. [Feng Z Z,Peng Y M,Jin Z K,Bao Z D.2004. Lithofacoes Paleogeography of the Cambrian and Ordovician in China. Beijing: Petroleum Industry Press,112-121] [7] 贡芸芸. 2016. 寒武系凝块石生物丘的沉积组构: 以鲁西地区张夏组为例. 现代地质, 30(2): 436-444. [Gong Y Y.2016. Sedimentary fabrics for the Cambrian thrombolite bioherm: An example from the Zhangxia Formation in western Shandong Province. Geoscience, 30(2): 436-444] [8] 郭芪恒,金振奎,朱小二,王金艺. 2018. 北京下苇甸剖面张夏组鲕粒特征及其白云化机制. 现代地质, 32(4): 766-773. [Guo Q H,Jin Z K,Zhu X E,Wang J Y.2018. Characteristics of oolites and their dolomitization mechanism of the Cambrian Zhangxia Formation at Xiaweidian outcrop in Beijing. Geoscience, 32(4): 766-773] [9] 韩作振,陈吉涛,张晓蕾,于学峰. 2009. 鲁西寒武系第三统张夏组附枝菌与附枝菌微生物岩特征研究. 地质学报, 83(8): 1097-1103. [Han Z Z,Chen J T,Zhang X L,Yu X F.2009. Characteristics of Epiphyton and Epiphyton microbialites in the Zhangxia Formation(Third Series of Cambrian),Shandong Province. Acta Geologica Sinica, 83(8): 1097-1103] [10] 卢衍豪,张文堂,朱兆玲,林焕令,周志毅,袁金良,彭善池,钱逸,章森桂,项礼文,李善姬,郭鸿俊,罗惠麟. 1994. 关于中国寒武系建阶的建议. 地层学杂志, 18(4): 318-328. [Lu Y H,Zhang W T,Zhu Z L,Lin H L, Zhou Z Y,Yuan J L,Peng S C,Qian Y,Zhang S G,Xiang L W,Li S J,Guo H J,Luo H L.1994. Suggestions for the establishment of the Cambrian Stages in China. Journal of Stratigrapphy, 18(4): 318-328] [11] 马永生,梅冥相,周润轩,杨文. 2017. 层序地层框架下的鲕粒滩形成样式: 以北京西郊下苇甸剖面寒武系第三统为例. 岩石学报, 33(4): 1021-1036. [Ma Y S,Mei M X,Zhou R X,Yang W.2017. Forming patterns for the oolitic bank within the sequence-stratigraphic framework: An example from the Cambrian Series 3 at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 33(4): 1021-1036] [12] 梅冥相. 1996. 淹没不整合型碳酸盐三级旋回层序: 兼论碳酸盐台地的凝缩作用. 岩相古地理, 16(6): 24-33. [Mei M X.1996. Carbonate third-order cyclic sequence of the drowning-unconformity type: Discussion on the condensation of carbonate platform. Sedimentary Facies and Paleogeography, 16(6): 24-33] [13] 梅冥相,马永生,周丕康,苏德辰,罗光文. 1997. 碳酸盐沉积学导论. 北京: 地震出版社,1-306. [Mei M X,Ma Y S,Zhou P K,Su D C,Luo G W.1997. Introduction of Carbonate Sedimentology. Beijing: Seismological Press,1-306] [14] 梅冥相. 2007a. 微生物碳酸盐岩分类体系的修订: 对灰岩成因结构分类体系的补充. 地学前缘, 14(5): 222-232. [Mei M X.2007a. Revised classification of microbial carbonates: Replenishment to the classification of limestones. Earth Science Frontiers, 14(5): 222-232] [15] 梅冥相. 2007b. 从凝块石概念的演变论微生物碳酸盐岩的研究进展. 地质科技情报, 26(6): 1-9. [Mei M X.2007b. Discussion on advances of microbial carbonates from the terminological change of thrombolites. Geological Science and Technology Information, 26(6): 1-9] [16] 梅冥相. 2010. 从正常海退与强迫型海退的辨别进行层序界面对比: 层序地层学的进展之一. 古地理学报, 12(5): 549-564. [Mei M X.2010. Correlation of sequence boundaries according to discerning between normal and forced regressions: The first advance in sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 12(5): 549-564] [17] 梅冥相. 2011a. 微生物席沉积学: 一个年轻的沉积学分支. 地球科学进展, 26(6): 586-597. [Mei M X.2011a. Microbial-mat sedimentology: A young branch on sedimentology. Advances in Earth Sciences, 26(6): 586-597] [18] 梅冥相. 2011b. 华北寒武系二级海侵背景下的沉积趋势及层序地层序列: 以北京西郊下苇甸剖面为例. 中国地质, 38(2): 317-337. [Mei M X.2011b. Depositional trends and sequence-stratigraphic successions under the Cambrian second-order transgressive setting in the North China Platform: A case study of the Xiaweidian section in the western suburb of Beijing. Geology in China, 38(2): 317-337] [19] 梅冥相,郭荣涛,胡媛. 2011. 北京西郊下苇甸剖面寒武系崮山组叠层石生物丘的沉积组构. 岩石学报, 27(8): 2473-2486. [Mei M X,Guo R T,Hu Y.2011. Sedimentary fabrics for the stromatolitic bioherm of the Cambrian Gushan Formation at the Xiaweidian section in the western suburb of Beijing. Acta Petrologica Sinica, 27(8): 2473-2486] [20] 梅冥相. 2012a. 从生物矿化作用衍生出的有机矿化作用: 地球生物学框架下重要的研究主题. 地质论评, 58(5): 937-951. [Mei M X.2012a. Organomineralization derived from the biomineralization: An important theme within the framework of geobiology. Geological Review, 58(5): 937-951] [21] 梅冥相. 2012b. 鲕粒成因研究的新进展. 沉积学报, 30(1): 20-32. [Mei M X.2012b. Brief introduction on new advances of studies on the origin of ooids. Acta Sedimentologica Sinica, 30(1): 20-32] [22] 梅冥相. 2014. 微生物席的特征和属性: 微生物席沉积学的理论基础. 古地理学报, 16(3): 285-304. [Mei M X.2014. Feature and nature of microbial-mat: Theoretical basis of microbial-mat sedimentology. Journal of Palaeogeography(Chinese Edition), 16(3): 285-304] [23] 梅冥相,刘丽,胡媛. 2015. 北京西郊寒武系凤山组叠层石生物层. 地质学报, 89(2): 440-461. [Mei M X,Liu L,Hu Y.2015. Stromatolitic biostrome of the Cambrian Fengshan Formation at the Xiaweidian section in the western suburb of Beijing,North China. Acta Geologica Sinica, 89(2): 440-461] [24] 梅冥相,孟庆芬. 2016. 现代叠层石的多样化构成: 认识古代叠层石形成的关键和窗口. 古地理学报, 18(2): 127-146. [Mei M X,Meng Q F.2016. Composition diversity of modern stromatolites: A key and window for further understanding of the formation of ancient stromatolites. Journal of Palaeogeography(Chinese Edition), 18(2): 127-146] [25] 梅冥相,张瑞,李屹尧,接雷. 2017. 华北地台东北缘寒武系芙蓉统叠层石生物丘中的钙化蓝细菌. 岩石学报, 33(4): 1073-1093. [Mei M X,Zhang R,Li Y Y,Jie L.2017. Calcified cyanobacterias within the stromatolotic bioherm for the Cambrian Furongian Series in the northeastern margin of the North-China Platform. Acta Petrologica Sinica, 33(4): 1073-1093] [26] 倪胜利. 2017. 北京西郊下苇甸剖面寒武系叠层石中的底栖鲕粒: 基本特征和重要意义. 地质通报, 36(2-3): 485-491. [Ni S L.2017. The benthic oolite within the stromatolitic bioherm of the Cambrian strata at the Xiaweidian section in the western suburb of Beijing: Essential features and important significance. Geological Bulletin of China, 36(2-3): 485-491] [27] 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论中国南、北方寒武系的对比. 古生物学报, 48(3): 437-452. [Peng S C.2009. Review on the studies of Cambrian trilobite faunas from Jiangnan slope belt,South China,with notes on Cambrian correlation between south and north China. Acta Palaeontologica Sinica, 48(3): 437-452] [28] 齐永安,王艳鹏,代明月,李妲. 2014. 豫西登封寒武系第三统张夏组凝块石灰岩及其控制因素. 微体古生物学报, 31(3): 243-255. [Qi Y A,Wang Y P,Dai M Y,Li D.2014. Thrombolites and controlling factors from the Zhangxia Formation(Third Series,Cambrian)in Dengfeng,western Henan. Acta Micropalaeontologica Sinica, 31(3): 243-255] [29] 齐永安,孙晓芳,代明月,张喜洋. 2017a. 豫西鲁山寒武系馒头组微生物岩旋回及其演化. 微体古生物学报, 34(2): 170-178. [Qi Y A,Sun X F,Dai M Y,Zhang X Y.2017a. The microbialite cycles and their evolution from the Cambrian Mantou Formation,Lushan,western Henan Province,central China. Acta Micropalaeontologica Sinica, 34(2): 170-178] [30] 齐永安,张喜洋,代明月,王敏. 2017b. 豫西寒武系微生物岩中的葛万菌化石及其微观结构. 古生物学报, 56(2): 154-167. [Qi Y A,Zhang X Y,Dai M Y,Wang M.2017b. Girvanella fossils and their microstructures from Cambrian microbialites of western Henan. Acta Palaeontologica Sinica, 56(2): 154-167] [31] 项礼文,朱兆玲,李善姬,周志强. 1999. 中国地层典·寒武系. 北京: 地质出版社,1-95. [Xiang L W,Zhu Z L,Li S J,Zhou Z Q.1999. Stratigraphycal Lexicon of China: Cambrian. Beijing: Geological Publishing House,1-95] [32] Adachi N,Nakai T,Ezaki Y,Liu J B.2014. Late Early Cambrian archaeocyath reefs in Hubei Province,South China: Modes of construction during their period of demise. Facies, 60: 703-717. [33] Adachi N,Kotani A,Ezaki Y,Liu J B.2015. Cambrian Series 3 lithistid sponge-microbial reefs in Shandong Province,North China: Reef development after the disappearance of archaeocyaths. Lethaia, 48: 1-12. [34] Aitken J D.1967. Classification and environmental significance of cryptalgal limestones and dolomites,with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37: 1163-1178. [35] Arp G,Helms G,Karlinska K,Schumann G,Reimer A,Reitner J,Trichet J.2012. Photosynthesis versus exopolymer degradation in the formation of microbialites on the Atoll of Kiritimati,Republic of Kiribati,Central Pacific. Geomicrobiology Journal, 29: 29-65. [36] Balthasar U,Cusack M.2015. Aragonite-calcite seas: Quantifying the gray area. Geology, 43: 99-102. [37] Bosak T,Knoll A H,Petroff A P.2013. The meaning of stromatolites. Annual Review of Earth and Planetary Sciences, 41: 21-44. [38] Bots P,Benning L G,Rickaby R E M,Shaw S.2011. The role of SO4 in the switch from calcite to aragonite seas. Geology, 39: 331-334. [39] Burne R V,Moore L S.1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2: 241-254. [40] Burne R V,Moore L S,Christy A,Troitzsch G U,King P L,Carnerup A M,Hamilton P J.2014. Stevensite in the modern thrombolites of Lake Clifton,Western Australia: A missing link in microbialite mineralization?Geology, 42: 575-578. [41] Castro-Contreras S I,Gingras M K,Pecoits E,Aubet N R,Petrash D,Castro-Contreras S M,Dick G,Planavsky N,Konhauser K O.2014. Textural and geochemical features of freshwater microbialites from Laguna Bacalar,Quintana Roo,Mexico. Palaios, 29: 192-209. [42] Castanier S,Métayer-Levrel G L,Perthuisot J.1999. Ca-carbonates precipitation and limestone genesis: The microbiogeologist point of view. Sedimentary Geology, 126: 9-23. [43] Catuneanu O,Galloway W E,Kendall C G St C,Miall A D,Posamentier H W,Strasser A,Tucker M E.2011. Sequence stratigraphy: Methodology and nomenclature. Newsletters on Stratigraphy,44(3):173-245. [44] Chafetz H,Barth J,Cook M,Guo X,Zhou J.2018. Origins of carbonate spherulites: Implications for Brazilian Aptian pre-salt reservoir. Sedimentary Geology, 365: 21-33. [45] Choquette P W,Hiatt E E.2008. Shallow-burial dolomite cement: A major component of many ancient sucrosic dolomites. Sedimentology, 55: 423-460. [46] Chen J T,Lee J-H,Woo J.2014. Formative mechanisms,depositional processes,and geological implications of Furongian(Late Cambrian)reefs in the North China Platform. Palaeogeography,Palaeoclimatology,Palaeoecology, 414: 246-259. [47] Cody R M,Noel P J.2012. Autogenic microbial genesis of Middle Miocene palustrine ooids,Nullarbor plain,Australia. Journal of Sedimentary Research, 82: 633-647. [48] Decho A W.2010. Overview of biopolymer-induced mineralization: What goes on in biofilms? Ecological Engineering, 36: 137-144. [49] Decho A W,Gutierrez T.2017. Microbial extracellular polymeric substances(epss)in ocean systems. Frontiers Microbiology, 8: 1-28. [50] Desjardins P R,Buatois L A,Pratt B R,Mangano M G.2012. Forced regressive tidal flats: Response to falling sea level in tide dominated settings. Journal of Sedimentary Research, 82: 149-162. [51] De los Ríos A,Ascaso C,Wierzchos J,Vincent W F,Quesada A.2015. Microstructure and cyanobacterial composition of microbial mats from the High Arctic. Biodivers Conserv, 24: 841-863. [52] Dupraz C,Reid R P,Braissant O,Decho A W,Norman R S,Visscher P T.2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96: 141-162. [53] Dupraz C,Reid R P,Visscher P T.2011. Microbialites,Modern. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin:Springer,617-635. [54] Ezaki Y,Liu J B,Adachi N.2003. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province,South China: Implications for the nature of oceanic conditions after the End-Permian extinction. Palaios, 18:388-402. [55] Ezaki Y,Liu J B,Adachi N,Yan Z.2017. Microbialite HYPERLINK “https://pubs.geoscienceworld.org/sepm/palaios/article/32/9/559/506749/microbialite-development-during-the-protracted”development during the protracted inhibition of skeletal-dominated reefs in the Zhangxia formation(cambrian series 3)in Shandong Province,North China. Paliaos, 32: 559-571. [56] Feldmann M,Mckenzie J A.1998. Stromatolite-thrombolite associations in a modern environment,Lee Stocking Island,Bahamas. Palaios, 13: 201-212. [57] Flemming H C,Wingender J.2010. The biofilm matrix. Nature Reviews-Microbiology, 8: 623-633. [58] Flemming H C,Wingender J,Kjelleberg S,Steinberg P,Rice S,Szewzyk U.2016. Biofilms: An emergent form of microbial life. Nature Review-Microbiology, 14: 563-575. [59] Flügel E.2010. Microfacies of Carbonate Rocks. Berlin:Springer,73-176. [60] Frantz C M,Petryshyn V A,Corsetti F A.2015. Grain trapping by filamentous cyanobacterial and algal mats: Implications for stromatolite microfabrics through time. Geobiology, 13: 409-423. [61] Gómez J J,Fernandez-López S.1994. Condensed processes in shallow platform. Sedimentary Geology, 92: 147-159. [62] Gerdes G,Dunajtschik-Piewak K,Riege H,Taher A G,Krumbein W E,Reineck H E.1994. Structural diversity of biogenic carbonate particles in microbial mats. Sedimentology, 41: 1273-1294. [63] Gerdes G.2010. What are microbial mats? In: Seckbach J,Oren A(eds). Microbial Mats: Modern and Ancient Microorganisms in Stratified Systems. Cellular Origin,Life in Extreme Habitats and Astrobiology,14. Berlin: Springer-Verlag,5-25. [64] Hardie L A.1996. Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600m.y. Geology,24:279-283. [65] Hell-Hansen W,Gjelberg J G.1994. Conceptual basis and variability in sequence stratigraphy: A different perspective. Sedimentary Geology, 92: 31-52. [66] Howell J,Woo J,Chough S K.2011. Dendroid morphology and growth patterns: 3-D computed tomographic reconstruction. Palaeogeography,Palaeoclimatology,Palaeoecology, 299: 335-347. [67] Hunt D,Tucker M E.1992. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sedimentay Geology, 81: 1-9. [68] Kennard J M,James N P.1986. Thrombolites and stromatolites: Two distinct types of microbial structures. Palaios, 1: 492-503. [69] Kiessling W.2009. Geologic and biologic controls on the evolution of reefs. Annual Review of Ecology,Evolution,and Systematics, 40: 173-192. [70] Kiessling W.2015. Fuzzy seas. Geology, 43: 191-192. [71] Kirkham A,Tucker M E.2018. Thrombolites,spherulites and fibrous crusts(Holkerian,Purbeckian,Aptian): Context,fabrics and origins. Sedimentary Geology, 374: 69-84. [72] Kruse P D,Reitner J R.2014. Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction. Memoirs of the Association of Australasian Palaeontologists, 45: 31-53. [73] Laval B,Cady S L,Pollack J C,McKayk C P,Bird J S,Grotzinger J P,Ford D C,Bohm H R.2000. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature, 407: 625-629. [74] Lee H S,Chough S K.2011. Depositional processes of the Zhushadong and Mantou formations(Early to Middle Cambrian),Shandong Province,China: Roles of archipelago and mixed carbonate-siliciclastic sedimentation on cycle genesis during initial flooding of the North China Platform. Sedimentology, 58: 1530-1572. [75] Lee J-H,Lee H S,Chen J T,Woo J,Chough S K.2014. Calcified microbial reefs in the Cambrian Series 2 of the North China Platform: Implications for the evolution of Cambrian calcified microbes. Palaeogeography,Palaeoclimatology,Palaeoecology, 403: 30-42. [76] Lee J-H,Chen J T,Chough S K.2015. The Middle-Late Cambrian reef transition and related geological events: A review and new view. Earth-Science Reviews, 145: 66-84. [77] Lee J-H,Riding R.2018. Marine oxygenation,lithistid sponges,and the early history of Paleozoic skeletal reefs. Earth-Science Reviews, 181: 98-121. [78] Liu L J,Wu Y S,Jiang H X,Riding R.2016. Calcified rivulariaceans from the Ordovician of the Tarim Basin,Northwest China: Phanerozoic lagoonal examples,and possible controlling factors. Palaeogeography,Palaeoclimatology,Palaeoecology, 448: 371-381. [79] Louyakis A S,Mobberley J M,Vitek B E,Visscher P T,Hagan P D,Reid R P,Kozdon R,Orland I J,Valley J W,Planavsky N J,Casaburi G,Foster J S.2017. A study of the microbial spatial heterogeneity of Bahamian thrombolites using molecular,biochemical,and stable isotope analyses. Astrobiology, 17: 413-430. [80] Louyakis A S,Gourle H,Casaburi G,Bonjawo R M E,Duscher A A,Foster J S.2018. A year in the life of a thrombolite: Comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environmental Microbiology, 20(2): 842-861. [81] Luchinina V A.2009. Renalcis and Epiphyton as different stages in the life cycle of calcareous algae. Paleontological Journal, 43: 463-468. [82] Mei M X,Ma Y S,Deng J,Chen H J.2005. From cycles to sequences: Sequence stratigraphy and relative sea level changes for the Late Cambrian of the North China Platform. Acta Geologica Sinica(English Edition), 79(3): 372-383. [83] Mei M X,Tucker M E.2013. Milankovitch-driven cycles in the Precambrian of China: The Wumishan Formation. Journal of Palaeogeography, 2(4): 369-389. [84] Meng X H,Ge M,Tucker M E.1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114: 189-222. [85] Mobberley J M,Khodadad C L M,Foster J S.2013. Metabolic potential of lithifying cyanobacteria-dominated thrombolytic mats. Photosynthesis Reserch, 118: 125-140. [86] Mobberley J M,Khodadad C L,Visscher P T,Reid R P,Hagan P,Foster J S.2015. Inner workings of thrombolites: Spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Scientific Report, 5: 1-15. [87] Pacton M,Ariztegui D,Wacey D, Kilburn M R,Rollion-Bard C,Farah R,Vasconcelos C.2012. Going nano: A new step toward understanding the processes governing freshwater ooid formation. Geological Society of America, 40: 547-550. [88] Pedley M.2014. The morphology and function of thrombolitic calcite precipitating biofilms: A universal model derived from freshwater mesocosm experiments. Sedimentology, 61: 22-40. [89] Perri E,Tucker M E,Slowakiewicz M,Whitaker F,Bowen L,Perrotta I D.2018. Carbonate and silicate biomineralization in a hypersaline microbial mat(Mesaieed sabkha,Qatar): Roles of bacteria,extracellular polymeric substances and viruses. Sedimentology, 65: 1213-1245. [90] Peters S E,Gaines R R.2012. Formation of the'Great Unconformity' as a trigger for the Cambrian explosion. Nature, 484: 363-366. [91] Planavsky N,Ginsburg R N.2009. Taphonomy of modern marine Bahamian microbialites. Palaios, 24: 5-17. [92] Planavsky N,Reid R P,Andres M,Visscher P T,Myshrall K L,Lyons T W.2009. Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology, 7: 566-576. [93] Pratt B R,Raviolo M M,Bordonaro O L.2012. Carbonate platform dominated by peloidal sands: Lower Ordovician La Silla Formation of the eastern Precordillera,San Juan,Argentina. Sedimentology, 59: 843-866. [94] Richter D K,Neuser R D,Schreuer J,Gies H,Immenhauser A.2011. Radiaxial-fibrous calcites: A new look at an old problem. Sedimentary Geology, 239: 23-36. [95] Riding R.1991. Calcified cyanobacteria. In: Riding R(ed). Calcareous Algae and Stromatolites. Berlin: Springer,55-87. [96] Riding R.2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms. Sedimentology,47(Supplement.1): 179-214. [97] Riding R.2002. Biofilm architecture of Phanerozoic cryptic carbonate marine veneers. Geology, 30: 31-34. [98] Riding R.2011. Microbialites,Stromatolites,and Thrombolites. In: Reitner J,Thiel V(eds). Encyclopedia of Geobiology. Berlin:Springer: 635-654. [99] Ries J B,Anderson M A,Hill R T.2008. Seawater Mg/Ca controls polymorph mineralogy of microbial CaCO3: A potential proxy for calcite-aragonite seas in Precambrian time. Geobiology, 6: 106-119. [100] Roberts J A,Kenward P A,Fowle D A,Goldstein R H,Gonzàlez L A,Moore D S.2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proceedings of the National Academy of Sciences of the United States of America, 110(36): 14540-14545. [101] Rowland S M,Shapiro R S.2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician. In: Kiessling W,Flügel E,Golonka J(eds). Phanerozoic Reef Patterns. Tulsa: SEPM Special Publication 72,95-128. [102] Sandberg P A.1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305: 19-22. [103] S $\check{a}$s $\check{a}$ran E,Bucur I I,Ples G,Riding R.2014. Late Jurassic Epiphyton-like cyanobacteria: Indicators of long-term episodic variation in marine bioinduced microbial calcification?Palaeogeography,Palaeoclimatology,Palaeoecology, 401: 122-131. [104] Samanta P,Mukhopadhyay S,Eriksson P G.2016. Forced regressive wedge in the Mesoproterozoic Koldaha Shale,Vindhyan basin,Son valley,central India. Marine and Petroleum Geoogy, 71: 329-343. [105] Schlager W.1999. Type 3 sequence boundaries. In: Harris P,Saller A,Simo A(eds). Carbonate Sequence Stratigraphy: Application to Reservoirs,Outcrops and Models. SEPM Special Publication, 63: 35-46. [106] Schlager W,Warrlichw G.2009. Record of sea-level fall in tropical carbonates. Basin Research, 21: 209-224. [107] Schlagintweit F,Bover-Arnal T.2013. Remarks on Bainella Radoicic,1959(type species B. irregularis)and its representatives. Facies, 59: 59-73. [108] Shapiro R S.2000. A comment on the systematic confusion of thrombolites. Palaios, 15: 166-169. [109] Siahi M,Hofmann A,Master S,Mueller C W,Gerdes A.2017. Carbonate ooids of the Mesoarchaean Pongola Supergroup,South Africa. Geobiology, 15(6): 750-766. [110] Stal L J.2012. Cyanobacterial Mats and Stromatolites. In: Whitton B A(ed). Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,65-125. [111] Stanley S M,Hardie L A.1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography,Palaeoclimatology,Palaeoecology, 144: 3-19. [112] Tang D J,Shi X Y,Jiang G Q.2013. Mesoproterozoic biogenic thrombolites from the North China platform. International Journal of Earth Sciences, 102(2): 1-13. [113] Theisen C H,Sumner D Y.2016. Thrombolite fabrics and origins: Influences of diverse microbial and metazoan processes on Cambrian thrombolite variability in the Great Basin,California and Nevada. Sedimentology, 63: 2217-2252. [114] Tourney J,Ngwenya B T.2014. The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386: 115-132. [115] Tucker M E,Wright V P.1990. Carbonate Sedimentology. Oxford: Blackwell Scientific Publication,1-447. [116] Vail P R,Mitchum J R M,Thompson Ⅲ S. 1977. Seismic stratigraphy and global changes of sea level,part 3: Relative changes of sea level from coastal onlap. In: Payton C E. Seismic Stratigraphy: Applications to Hydrocarbon Exploration. AAPG Memoir, 26: 63-81. [117] van Wagoner J C,Mitchum R M,Campion K M J,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores and outcrops. AAPG Methods in Exploration, 7: 1-55 [118] Vulpius S,Kiessling W.2018. New constraints on the last aragonite-calcite sea transition from Early Jurassic ooids. Facies, 64: 1-9. [119] Whitton B A,Mateo P.2012. Rivulariaceae. In: Whitton B A. Ecology of Cyanobacteria Ⅱ: Their Diversity in Space and Time. Netherlands: Springer,561-591. [120] Wilkinson B H,Owen R M,Carrol A R.1985. Submarine hydrothermal weathering,global eustasy,and carbonate polymorphism in Phanerozoic marine oolites. Journal of Sedimentary Petrology, 55: 171-183. [121] Woo J,Chough S K,Han Z.2008. Chambers of epiphyton thalli in microbial buildups,Zhangxia Formation(Middle Cambrian),Shandong Province. Palaios, 23: 55-64. [122] Woo J,Chough S K.2010. Growth patterns of the Cambrian microbialite: Phototropism and speciation of Epiphyton. Sedimentary Geology, 229: 1-8. [123] Woods A D.2013. Microbial ooids and cortoids from the Lower Triassic(Spathian)Virgin Limestone,Nevada,USA: Evidence for an Early Triassic microbial bloom in shallow depositional environments. Global and Planetary Change, 105: 91-101. [124] Xiao E Z,Latif K,Riaz M,Qin Y L,Wang H.2018. Calcified microorganisms bloom in Furongian of the North China Platform: Evidence from microbialitic-bioherm in Qijiayu section,Hebei. Open Geosciences, 10: 250-260. [125] Yan Z,Liu J B,Ezaki Y,Adachi N,Du S X.2017. Stacking patterns and growth models of multiscopic structures within Cambrian Series 3 thrombolites at the Jiulongshan section,Shandong Province,northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 474: 45-57.