Depositional evolution characteristics of the Triassic Baikouquan Formation in Xiazijie fan area of Mahu sag, Junggar Basin
Pan Jin1, Zhang Chang-Min1, Pang Lei2, Li Peng2, Zhu Rui1
1 School of Geosciences,Yangtze University,Wuhan 430100,China; 2 Research Institute of Exploration and Development,Xinjiang Oilfield Company,PetroChina,Xinjiang Karamay 834000,China
Abstract:Mahu sag is the largest oil and gas accumulation belt in the Junggar Basin, and the exploration target is focusing on the complex and highly heterogeneous coarse-grained deposits. To reveal the internal heterogeneity of coarse-grained deposits, we carried detail sedimentary and reservoir architecture analyses (e.g., configuration, size, direction and stacking patterns) by using seismic, core and well logging data from the study area. We have identified 12 lithofacies and 10 sedimentary microfacies that are composed of different combinations of lithofacies Based on the stacking patterns of sedimentary microfacies in vertical and lateral, we have identified 10 vertically stacked fan lobes. Each fan lobes is strongly affected by the depositional environment and has changed from stacked alluvial fans and fluvial fans to fan delta under the influence of overall rise of the lake level and the decreased supply sediment. A detail analysis of the sedimentary characteristics for each phase of fan lobes, including long axis, short axis, long axis and short axis ratio, thickness changes of inner and outer fan, slope gradient and grain size change, shows several progressive changes when fan move downstream: (1) the grain size has become smaller when moving downstream and is controlled by the slope gradient of fan. For example, sediment grain size has reduced significantly in a steep slope. (2) The numbers of channel and water discharge have decreased toward downstream. (3) The connectivity of sedimentary bodies in lateral and vertical has reduced. (4) The thickness of sandstone and conglomerate has become thinner, while the mudstone has become much thicker. The lacustrine deposits become more dominant. In summary, we have recognized six fan models for the Baikouquan Formation in Mahu sag, including alluvial fan, alluvial-fluvial fan, fluvial-terminal fan, fluvial delta-fan delta, fan delta and large fluvial fan.
Pan Jin,Zhang Chang-Min,Pang Lei et al. Depositional evolution characteristics of the Triassic Baikouquan Formation in Xiazijie fan area of Mahu sag, Junggar Basin[J]. JOPC, 2019, 21(6): 913-924.
[1] 陈欢庆,赵应成,李树庆,李顺明,王晓光. 2014. 岩性分析对砾岩储层构型研究的意义: 以准噶尔盆地西北缘六区克下组冲积扇储层为例. 天然气地球科学, 25(5): 721-731. [Chen H Q,Zhao Y C,Li S Q,Li S M,Wang X G.2014. Significance of lithology analyses on the researcher of conglomerate reservoir architecture of alluvial fan sediments: Taking alluvial fan reservoir in some area of northwest Margin of Junggar Basin as an example. Natural Gas Geoscience, 25(5): 721-731] [2] 陈欢庆,梁淑贤,舒治睿,邓晓娟,彭寿昌. 2015. 冲积扇砾岩储层构型特征及其对储层开发的控制作用: 以准噶尔盆地西北缘某区克下组冲积扇储层为例. 吉林大学学报(地球科学版), 45(1): 13-24. [Chen H Q,Liang S X,Shu Z R,Deng X J,Peng S C.2015. Characteristics of conglomerate reservoir architecture of alluvial fan and its controlling effects to reservoir development: Taking alluvial fan reservoir in some area of northwest margin of Junggar Basin as an example. Journal of Jilin University(Earth Science Edition), 45(1): 13-24] [3] 陈玉坤,王延杰,朱亚婷,刘红现,周玉辉,闫家宁. 2015. 克拉玛依油田七东1区克下组冲积扇储层构型表征. 岩性油气藏, 27(5): 93-97. [Chen Y K,Wang Y J,Zhu Y T,Liu H X,Zhou Y H,Yan J N.2015. Architecture characterization of alluvial fan reservoir of Lower Karamay Formation in east district 7(1)of Karamay Oilfield. Lithologic Reservoirs, 27(5): 93-97] [4] 雷振宇,卞德智,杜社宽,蔚远江,马辉树. 2005a. 准噶尔盆地西北缘扇体形成特征及油气分布规律. 石油学报, 26(1): 8-12. [Lei Z Y,Bian D Z,Du S K,Wei Y J,Ma H S.2005a. Characteristics of fan forming and oil-gas distribution in west-north margin of Junggar Basin. Acta Petrolei Sinica, 26(1): 8-12] [5] 雷振宇,鲁兵,蔚远江,张立平,石昕. 2005b. 准噶尔盆地西北缘构造演化与扇体形成和分布. 石油与天然气地质, 26(1): 86-91. [Lei Z Y,Lu B,Wei Y J,Zhang L P,Shi X.2005b. Tectonic evolution and development and distribution of fans on northwestern edge of Junggar Basin. Oil and Gas Geology, 26(1): 86-91] [6] 李阳,李双应,岳书仓,王忠诚,李忠,吴朝东,李翔. 2002. 胜利油田孤岛油区馆陶组上段沉积结构单元. 地质科学, 37(2): 219-230. [Li Y,Li S Y,Yue S L,Wang Z C,Li Z,Wu C D,Li X.2002. Sedimentary architectural elements of upper member of Guantao Formation in Gudao area of Shengli Oilfield. Chinese Journal of Geology, 37(2): 219-230] [7] 马世忠,吕桂友,闫百泉,范广娟. 2008. 河道单砂体“建筑结构控三维非均质模式”研究. 地学前缘, 15(1): 57-64. [Ma S Z,Lü G Y,Yan B Q,Fan G J.2008. Research on three-dimensional heterogeneous model of channel sandbody controlled by architecture. Earth Science Frontiers, 15(1): 57-64] [8] 唐勇,徐洋,瞿建华,孟祥超,邹志文. 2014. 玛湖凹陷百口泉组扇三角洲群特征及分布. 新疆石油地质, 35(6): 628-635. [Tang Y,Xu Y,Qu J H,Meng X C,Zou Z W.2014. Fan-delta group characteristics and its distribution of the Triassic Baikouquan reservoirs in Mahu sag of Junggar Basin. Xinjiang Petroleum Geology, 35(6): 628-635] [9] 蔚远江,李德生,胡素云,雷振宇,何登发. 2007. 准噶尔盆地西北缘扇体形成演化与扇体油气藏勘探. 地球学报, 28(1): 62-71. [Wei Y S,Li D S,Hu S Y,Lei Z Y,He D F.2007. Fans sedimentation and exploration direction of fan hydrocarbon reservoirs in foreland thrust belt of the Northwestern Junggar Basin. Acta Geoscientica Sinica, 28(1): 62-71] [10] 岳大力,吴胜和,刘建民. 2007. 曲流河点坝地下储层建筑结构精细解剖方法. 石油学报, 28(4): 99-103. [Yue D L,Wu S H,Liu J M.2007. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering river. Acta Petrolei Sinica,28(4): 99-103] [11] 岳大力,吴胜和,程会明,杨渔. 2008. 基于三维储层构型模型的油藏数值模拟及剩余油分布模式. 中国石油大学学报: 自然科学版, 32(2): 21-27. [Yue D L,Wu S H,Cheng H M,Yang Y.2008. Numerical reservoir simulation and remaining oil distribution patterns based on 3D reservoir architecture model. Journal of China University of Petroleum(Edition of Natural Science), 32(2): 21-27] [12] 张昌民. 1992a. 储层研究中的层次分析法. 石油与天然气地质, 13(3): 344-350. [Zhang C M.1992a. Hierarchy analysis in reservoir researches. Oil and Gas Geology, 13(3): 344-350] [13] 张昌民. 1992b. 现代荆江江心洲沉积. 沉积学报, 14(2): 146-153. [Zhang C M.1992b. Modern channel islands deposits in Jingjiang reach of Yangtze River. Acta sedimentologica Sinica, 14(2): 146-153] [14] 张昌民,林克湘,徐龙,施东. 1994. 储层砂体建筑结构分析. 江汉石油学院学报, 16(2): 1-7. [Zhang C M,Lin K X,Xu L,Shi D.1994. Architecture analysis for reservoir sandbodies. Journal for Jianghan Petroleum Institute, 16(2): 1-7] [15] 张昌民,徐龙,林克湘,刘怀波,裘亦楠. 1996. 青海油砂山油田第68层分流河道砂体解剖学. 沉积学报, 14(4): 71-77. [Zhang C M,Xu L,Lin K X,Liu H B,Qiu Y N.1996. Anatomy of distributary channel sand,the No.68 sandbody of Youshashan,Western Qinghai. Acta sedimentologica Sinica, 14(4): 71-77] [16] 张昌民,尹太举,张尚锋,李少华,王大海,刘军. 2004. 泥质隔层的层次分析: 以双河油田为例. 石油学报, 25(3): 48-52. [Zhang C M,Yin T J,Zhang S F,Li S H,Wang D H,Liu J.2004. Hierarchy analysis of mudstone barriers in Shuanghe Oilfield. Acta Petrolei Sinica, 25(3): 48-52] [17] 张昌民,尹太举,喻辰,叶继根,杜庆龙. 2013a. 基于过程的分流平原高弯河道砂体储层内部建筑结构分析: 以大庆油田萨北地区为例. 沉积学报, 31(4): 653-662. [Zhang C M,Yin T J,Yu C,Ye J G,Du Q L.2013a. Reservoir architectural analysis of meandering channel sandstone in the delta plain based on the depositional process. Acta Sedimentologica Sinica, 31(4): 653-662] [18] 张昌民,尹太举,赵磊,尹艳树,叶继根,杜庆龙. 2013b. 辫状河储层内部建筑结构分析. 地质科技情报, 32(4): 7-13. [Zhang C M,Yin T J,Zhao L,Yin Y S,Ye J G,Du Q L.2013b. Reservoir architectural analysis of braided channel. Geological Science and Technology Information, 32(4): 7-13] [19] 张昌民,王绪龙,朱锐,瞿建华,潘进,安志渊. 2016. 准噶尔盆地玛湖凹陷百口泉组岩石相划分. 新疆石油地质, 37(5): 606-614. [Zhang C M,Wang X L,Zhu R,Qu J H,Pan J,An Z Y.2016. Lithofacies classification of Baikouquan Formation in Mahu Sag,Junggar Basin. Xinjiang Petroleum Geology, 37(5): 606-614] [20] 张昌民,胡威,朱锐,王绪龙,侯国伟. 2017. 分支河流体系的概念及其对油气勘探开发的意义. 岩性油气藏, 29(3): 1-9. [Zhang C M,Hu W,Zhu R,Wang X L,Hou G W.2017. Concept of distributive fluvial system and its significance to oil and gas exploration and development. Lithologic Reservoirs, 29(3): 1-9] [21] Deptuck M E,Steffens G S,Barton M,Pirmez C.2003. Architecture and evolution of upper fan channel-belts on the Niger Delta slope and in the Arabian Sea. Marine and Petroleum Geology, 20(6-8): 649-676. [22] Fontana A A,Mozzi P,Marchetti M.2014. Alluvial fans and megafans along the southern side of the Alps. Sedimentary Geology, 301: 150-171. [23] Galloway W E,Hobday D K.1983. Terrigenous clastic depositional systems: Applications to petroleum,coal,and uranium exploration. Springer. [24] Hartley A J,Weissmann G S,Nichols G J,Warwick G L.2010. Large distributive fluvial systems: Characteristics,distribution,and controls on development. Journal of Sedimentary Research, 80(2): 167-183. [25] Miall A D.1985. Architectural-element analysis: A new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22(4): 261-308. [26] Miall A D.1988. Architecture element and bounding surfaces in fluvial deposits,anatomy of the Kayenta formation(Lower Jurassic),Southeast Corolado. Sedimentary Geology, 55(3-4): 233-262. [27] Miall A D.1996. The Geology of Fluvial Deposits: Sedimentary Facies,Basin Analysis and Petroleum Geology. Berlin,Heidelberg. New York: Springer-Verlag,57-98. [28] Neal A,Grasmueck M,McNeill D F,Viggiano D A,Eberli G P.2008. Full-resolution 3D radar stratigraphy of complex oolitic sedimentary architecture: Miami limestones,Florida,U.S.A. Journal of Sedimentary Research, 78(9): 638-653. [29] Stephen C,Nigel M.2009. Spatial and temporal evolution of a terminal fluvial fan system: The Permian Organ Rock Formation,South-east Utah,USA. Sedimentology,56: 1774-1800. [30] Luca C,Nigel P M,William D M.2013. A quantitative approach to fluvial facies models: Methods and example results. Sedimentology, 60: 1526-1558. [31] Willis B J,Behrensmeyer A K.1994. Architecture of Miocene overbank deposits in Northern Pakistan. Journal of Sedimentary Research,64:60-67.