Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform:A response of microbial community to shallow marine anoxia
Zhang Wenhao1, Shi Xiaoying1,2, Tang Dongjie2, Wang Xinqiang1,2
1 School of Earth Sciences and Resources,China University of Geosciences(Beijing),Beijing 100083;
2 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences,Beijing 100083
Geological records showed that an important biological extinction event happened during the Early-Middle Cambrian transition period, but there are controversial views about its orign. In order to reveal the response of microbial community to the biotic crisis and the marine environment change,microfabrics and organo-minerals in the oncoid cortices formed in that period at the North China Platform were studied. The study revealed that abundant microbial fossils exist in the oncoids. Study of microfabrics and organomineralization patterns in the oncoid cortices suggested that the oncoids were likely formed in seawater with high alkalinity and active bacterial sulfate reduction(BSR). Rich pyrite framboids and purported heterotrophic remains in the cortices represented an anoxic bottom-water condition,and facies and depositional sequence analyses suggested a shallow shelf environment. A wide correlation indicated that the time-equivalent oncoids or related microbialites were widespread in the North China Platform,and also well recorded in some other continents or plates. This may imply an extensive bloom of microbial communities in the aftermath of terminal Early Cambrian biotic crisis,which was likely related to a pervasive anoxia in shallow marine environments caused by LIP(Large igneous province) eruptions,and subsequently global warming and invasion of anoxic deep seawater onto the shelves at that time. The broad distribution of oncoids and other related microbialites at the Early-Middle Cambrian transition may have reflected an ecological response and rapid expansion of microbial community to the high-stressed environments where benthic metazoans had been largely suppressed during the biotic crises.
Corresponding Authors:
About the corresponding author: Shi Xiaoying,born in 1956,is a professor in China University of Geosciences(Beijing). E-mail: shixycugb@cugb.edu.cn
E-mail: wenhaocugb@aliyun.com
About author: Zhang Wenhao,born in 1987,is a Ph D. candidate of paleontology and stratigraphy. He is mainly engaged in biogeology and sedimentology. E-mail: wenhaocugb@aliyun.com
Cite this article:
Zhang Wenhao,Shi Xiaoying,Tang Dongjie et al. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform:A response of microbial community to shallow marine anoxia[J]. JOPC, 2014, 16(3): 305-318.
Zhang Wenhao,Shi Xiaoying,Tang Dongjie et al. Mass-occurrence of oncoids in the Early-Middle Cambrian transition at western margin of North China Platform:A response of microbial community to shallow marine anoxia[J]. JOPC, 2014, 16(3): 305-318.
安太庠. 1987. 中国南部早古生代牙形石[M]. 北京:北京大学出版社,1-238. 冯增昭. 1990. 华北地台早古生代岩相古地理[M]. 北京:地质出版社,1-270. 高建平,朱士兴. 1998. 晋东北地区寒武系微生物岩及其与沉积环境的关系[J]. 微体古生物学报, 15(2): 166-177. 高冉,赵健,任银花,等. 2011. 北京西山地质旅游资源开发[J]. 资源与产业, 13(1): 126-131. 内蒙古自治区地质矿产局. 1991. 内蒙古自治区区域地质志[M]. 北京:地质出版社,1-725. 彭善池. 2009. 华南斜坡相寒武纪三叶虫动物群研究回顾并论我国南、北方寒武系的对比[J]. 古生物学报, 48(3): 437-452. 史晓颖,陈建强,梅仕龙. 1997. 华北地台东部寒武系层序地层年代格架[J]. 地学前缘, 4(3-4): 161-173. 史晓颖,陈建强,梅仕龙. 1999. 中朝地台奥陶系层序地层序列及其对比[J]. 地球科学: 中国地质大学学报, 24(6): 471-478. 王鸿祯,史晓颖,王训练,等. 2000. 中国层序地层研究[M]. 广东广州:广东科技出版社,1-457. 王永标,童金南,王家生,等. 2005. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义[J]. 科学通报, 50(6): 552-558. 项礼文,李善姬,南润善,等. 1981. 中国的寒武系[M]. 北京:地质出版社,1-193. 项礼文,朱兆玲,李善姬,等. 1999. 中国地层典?寒武系[M]. 北京:地质出版社,1-95. 张文浩,史晓颖,汤冬杰,等. 2014. 华北地台西缘早—中寒武世之交的核形石:微组构与生物矿化机制研究[J]. 现代地质, 28(1): 1-15. lvaro J J,Vennin E,Moreno-Eiris E, et al. 2000. Sedimentary patterns across the Lower-Middle Cambrian transition in the Esla nappe(Cantabrian Mountains,northern Spain)[J]. Sedimentary Geology, 137(1): 43-61. Arp G,Reimer A,Reitner J. 2001. Photosynthesis-induced biofilm calcification and calcium concentrations in Phanerozoic oceans[J]. Science, 292: 1701-1704. Bottjer D J,Campbell K A,Schubert J K, et al. 1995. Palaeoecological models,non-uniformitarianism,andtracking the changing ecology of the past[J]. Journal of Geological Society,London,Special Publication, 83: 7-26. Brasier M,Corfield R,Derry L, et al. 1994. Multiple δ 13 C excursions spanning the Cambrian explosion to the Botomian crisis in Siberia[J]. Geology, 22(5): 455-458. Calner M. 2005. A Late Silurian extinction event and anachronistic period[J]. Geology, 33(4): 305-308. Cohen K M,Finney S,Gibbard P L. 2012. International chronostratigraphicchart[DB/OL]. International Commission on Stratigraphy[2012-12-02].http: ∥www.stratigraphy org/ICSchart/ChronostratChart2012.pdf. Dilliard K A,Pope M C,Coniglio M, et al. 2007. Stable isotope geochemistry of the lower Cambrian Sekwi Formation,Northwest Territories,Canada: Implications for ocean chemistry and secular curve generation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 256(3-4): 174-194. Dupraz C,Visscher P,Baumgartner L, et al. 2004. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake(Eleuthera Island,Bahamas)[J]. Sedimentology, 51(4): 745-765. Dupraz C,Reid R P,Braissant O, et al. 2009. Processes of carbonate precipitation in modern microbial mats[J]. Earth-Science Reviews, 96(3): 141-162. Elick O,Schneider J,Shinaq R. 2002. Prominent facies from the Lower/Middle Cambrian of the Dead Sea area(Jordan)and their palaeodepositional significance[J]. Bulletin de la Société géologique de France, 173(6): 547-552. Erwin D H. 2001. Lessons from the past: Biotic recoveries from mass extinctions[J]. Proceedings of the National Academy of Sciences, 98(10): 5399-5403. Evins L Z,Jourdan F,Phillips D. 2009. The Cambrian Kalkarindji Large Igneous Province: Extent and characteristics based on new 40 Ar / 39 Ar and geochemical data[J]. Lithos, 110(1-4): 294-304. Ezaki Y,Liu J,Adachi N. 2012. Lower Triassic stromatolites in Luodian County,Guizhou Province,South China: Evidence for the protracted devastation of the marine environments[J]. Geobiology, 10(1): 48-59. Fischer A G. 1965. Fossils,early life,and atmospheric history[J]. Proceedings of the National Academy of Sciences of the United States of America, 53(6): 1205-1215. Fischer A G,Arthur M A. 1977. Secular variations in the pelagic realm[A]. In: Cook H E,Enos P(eds). Deep-Water Carbonate Environments[C]. SEPM Special Pulication, 25: 19-51. Flügel E,Kiessling W. 2002. Patterns of Phanerozoic reef crises[A]. In:Kiessling W,Flügel E,Golonka J(eds).Phanerozoic Reef Patterns[C]. SEPM Special Publication, 72: 691-733. Glass L M,Phillips D. 2006. The Kalkarindji continental flood basalt province: A new Cambrian large igneous province in Australia with possible links to faunal extinctions[J]. Geology, 34(6): 461-464. Gomez F J,Ogle N,Astini R A, et al. 2007. Paleoenvironmental and carbon-oxygen isotope record of Middle Cambrian Carbonates(La Laja Formation)in the Argentine Precordillera[J]. Journal of Sedimentary Research, 77(10): 826-842. Gradziński M,Tyszka J,Uchman A, et al. 2004. Large microbial-foraminiferal oncoids from condensed Lower-Middle Jurassic deposits:A case study from the Tatra Mountains,Poland[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 213(1-2): 133-151. Hgele D,Leinfelder R,Grau J, et al. 2006. Oncoids from the river Alz(southern Germany): Tiny ecosystems in a phosphorus-limited environment[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 237(2-4): 378-395. Hallam T. 2005. Catastrophes and Lesser Calamities: The Causes of Mass Extinctions[M]. New York: Oxford University Press,1-274. Haq B U,Schutter S R. 2008. A chronology of Paleozoic sea-level changes[J]. Science, 322: 64-68. Harwood C L,Sumner D Y. 2011. Microbialites of the Neoproterozoic Beck Spring Dolomite,Southern California[J]. Sedimentology, 58(6): 1648-1673. Hough M,Shields G,Evins L, et al. 2006. A major sulphur isotope event at c.510 Ma: A possible anoxia-extinction-volcanism connection during the Early-Middle Cambrian transition?[J]. Terra Nova, 18(4): 257-263. Howley R A,Jiang G. 2010. The Cambrian Drumian carbon isotope excursion(DICE)in the Great Basin,western United States[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 296(1-2): 138-150. Jones B,Renaut R W. 1994. Crystal fabrics and microbiota in large pisoliths from Laguna Pastos Grandes,Bolivia[J]. Sedimentology, 41(6): 1171-1202. Jones B,Renaut R W. 1997. Formation of silica oncoids around geysers and hot springs at El Tatio,Chile[J]. Sedimentology, 44(2): 287-304. Jones B,Renaut R W. 2010. Impact of seasonal changes on the formation and accumulation of soft siliceous sediments on the Discharge Apron of Geysir,Iceland[J]. Journal of Sedimentary Research, 80(1): 17-35. Kah L C,Lyons T W,Frank T D. 2004. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere[J]. Nature, 431: 834-838. Kershaw S,Crasquin S,Li Y, et al. 2012. Microbialites and global environmental change across the Permian-Triassic Boundary: A synthesis[J]. Geobiology, 10(1): 25-47. Kershaw S,Li Y,Crasquin-Soleau S, et al. 2007. Earliest Triassic microbialites in the South China block and other areas: Controls on their growth and distribution[J]. Facies, 53(3): 409-425. Kiessling W,Simpson C. 2011. On the potential for ocean acidificationto be a general cause of ancient reef crises[J]. Global Change Biology, 17(1): 56-67. Li X Z,Guan S R,Xie Q B, et al. 2000. The oncoids genesis in the Middle Member of the Guanzhuang Formation of Eocene in Pingyi Basin[J]. Acta Petrologica Sinica, 16(2): 261-268. Logan W,Rezakr R,Ginsburgr N. 1964. Classificationand environmental significance of algalstromatolites[J]. The Journal of Geology, 72(1): 68-83. Mata S A,Bottjer D J. 2012. Microbes and mass extinctions: Paleoenvironmental distribution of microbialites during times of biotic crisis[J]. Geobiology, 10(1): 3-24. Mazumdar A,Strauss H. 2006. Sulfur and strontium isotopic compositions of carbonate and evaporite rocks from the late Neoproterozoic-early Cambrian Bilara Group(Nagaur-Ganganagar Basin,India): Constraints on intrabasinal correlation and global sulfur cycle[J]. Precambrian Research, 149(3): 217-230. Meng X,Ge M,Tucker M E. 1997. Sequence stratigraphy,sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform[J]. Sedimentary Geology, 1140(1-4): 189-222. Meyer K M,Kump L R. 2008. Oceanic Euxinia in Earth history: Causes and consequences[J]. Annual Review of Earth and Planetary Sciences, 36(1): 251-288. Montaez I P,Osleger D A,Banner J L, et al. 2000. Evolution of the Sr and C isotope composition of Cambrian oceans[J]. GSA Today, 10(5): 1-7. Noffke N,Beukes N,Bower D, et al. 2008. An actualistic perspective into Archean worlds-(cyano‐)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section,2 9 Ga Pongola Supergroup,South Africa[J]. Geobiology, 6(1): 5-20. Palmer A. 1998. Terminal early Cambrian extinction of the Olenellina: Documentation from the Pioche Formation,Nevada[J]. Journal of Paleontology, 72(4): 650-672. Peng S. 2009. The newly-developed Cambrian biostratigraphic succession and chronostratigraphic scheme for South China[J]. Chinese Science Bulletin, 54(22): 4161-4170. Perejón A,Moreno-Eiris E,Bechstdt T, et al. 2012. New Bilbilian(early Cambrian)archaeocyath-rich thrombolitic microbialite from the Lncara Formation(Cantabrian Mts.,northern Spain)[J]. Journal of Iberian Geology, 38(2): 313-330. Peryt T M. 1983. Classification of coated grains[A]. In: Peryt T M(ed). Coated Grains[M]. New York: Springer,Berlin Heidelberg,3-6. Powell W G,Johnston P A,Collom C J, et al. 2006. Middle Cambrian brine seeps on the Kicking Horse Rim and their relationship to talc and magnesite mineralization and associated dolomitization,British Columbia,Canada[J]. Economic Geology, 101(2): 431-451. Pruss S B,Bottjer D J,Corsetti F A, et al. 2006. A global marine sedimentary response to the end-Permian mass extinction: Examples from southern Turkey and the western United States[J]. Earth-Science Reviews, 78(3-4): 193-206. Renaut R W,Jones B,Rosen M R. 1996. Primary silica oncoids from Orakeikorako hot springs,North Island,New Zealand[J]. Palaios, 11(5): 446-458. Reolid M,Nieto L M. 2010. Jurassic Fe-Mn macro-oncoids from pelagic swells of the External Subbetic(Spain): Evidences of microbial origin[J]. Geologica Acta, 8(2): 151-168. Riding R. 1991. Classification of microbial carbonates[A]. In: Calcareous Algae and Stromatolites[M]. Berlin:Springer-Verlag,21-51. Riding R. 2000. Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms[J]. Sedimentology,47(Supplement 1): 179-214. Riding R. 2001. Ordovician calcified algae and cyanobacteria,northern TarimBasin subsurface,China[J]. Palaeontology, 44(4): 783-810. Riding R. 2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time[J]. Sedimentary Geology, 185(3): 229-238. Riding R,Liang L. 2005. Geobiology of microbial carbonates: Metazoan and seawater saturation state influences on secular trends during the Phanerozoic[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 219(1-2): 101-115. Riding R,Voronova L. 1982. Recent freshwater oscillatoriacean analogue of the Lower Paleozoic calcareous alga Angulocellularia[J]. Lethaia, 15(2): 105-114. Schaefer M O,Gutzmer J,Beukes N J. 2001. Late Paleoproterozoic Mn-rich oncoids: Earliest evidence for microbially mediated Mn precipitation[J]. Geology, 29(9): 835-838. Schubert J K,Bottjer D J. 1992. Early Triassic stromatolites aspost-mass extinction disaster forms[J]. Geology, 20(10): 883-886. Shapiro R S,Fricke H C,Fox K. 2009. Dinosaur-bearing oncoids from ephemeral lakes of the Lower Cretaceous Cedar Mountain Formation,Utah[J]. Palaios, 24(1): 51-58. Sheehan P M,Harris M T. 2004. Microbialite resurgence after the Late Ordovician extinction[J]. Nature, 430: 75-78. Shi G R,Chen Z Q. 2006. Lower Permian oncolites from South China: Implications for equatorial sea-level responses to Late Paleozoic Gondwanan glaciation[J]. Journal of Asian Earth Sciences, 26(3-4): 424-436. Shi X Y,Mei S L,Chen J Q, et al. 1999. Cambrian sequence stratigraphy and sea level cycles of North China Platform[J]. Journal of China University of Geosciences, 10(2): 110-118. Shi X Y,Zhang C H,Jiang G Q, et al. 2008. Microbial mats from the Mesoproterozoiccarbonates of the North China Platform and their potential for hydrocarbon-generation[J]. Journal of China University of Geosciences, 19(5): 549-566. Soliman M F,Goresy A E. 2012. Framboidal and idiomorphic pyrite in the upper Maastrichtian sedimentary rocks at Gabal Oweina,Nile Valley,Egypt: Formation processes,oxidation products and genetic implications to the origin of framboidal pyrite[J]. Geochimica et Cosmochimica Acta, 90: 195-220. Sundberg F A. 2005. The Topazan Stage,a new Laurentian stage(Lincolnian series-“Middle” Cambrian)[J]. Journal of Paleontology, 79(1): 63-71. Tang D,Shi X,Jiang G, et al . 2013. Microfabrics in Mesoproterozoic microdigitate stromatolites: Evidence of biogenicity and organomineralization at micron and nanometer scales[J]. Palaios, 28(3): 178-194. Tucker M E,Wright V P. 1990. Carbonate Sedimentology[M]. Oxford: Wiley-Blackwell,1-482. Van Buchem F S P,Eberli G P,Whalen M T, et al. 1996. The basinal geochemical signature and platform margin geometries in the Upper Devonianmixed carbonate-siliciclastic system of western Canada[J]. Bulletin de la Societe Geologique de France, 167: 685-699. Veizer J,Godderis Y,Franois L M. 2000. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon[J]. Nature, 408: 698-701. Visscher P T,Stolz J F. 2005. Microbial mats as bioreactors: Populations,processes,and products[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 219(1-2): 87-100. Walker J,Geissman J. 2009. GSA geologic time scale[J]. GSA Today, 19(4-5): 60-61. Wang L,Shi X Y,Jiang G Q. 2012a. Pyrite morphology and redox fluctuations recorded in the Ediacaran Doushantuo Formation[J]. Palaeogeograpgy,Palaeoclimatology,Palaeoecology, 333(2): 218-227. Wang X H,Gan L,Wiens M, et al. 2012b. Distribution of microfossils within polymetallic nodules: Biogenic clusters within manganese layers[J]. Marine Biotechnology, 14(1): 96-105. Wang X L,Hu W X,Yao S P, et al. 2011. Carbon and strontium isotopes and global correlation of Cambrian Series 2-Series 3 carbonate rocks in the Keping area of the northwestern Tarim Basin,NW China[J]. Marine and Petroleum Geology, 28: 992-1008. Wang Y,Tong J,Wang J, et al. 2005. Calcimicrobialite after end-Permian mass extinction in South China and its palaeoenvironmental significance[J]. Chinese Science Bulletin, 50(7): 665-671. Whalen M T,Eberli G P,Van Buchem F S P, et al. 2000a. Facies architecture of Upper Devonian carbonate platforms,Rocky Mountains,Canada[J]. Bulletin Centre Recherche Elf Exploration-Production,Mémoire, 24: 139-178. Whalen M T,Eberli G P,Van Buchem F S P, et al. 2000b. Bypass margins,basin-restricted wedges and platform-to-basin correlation,Upper Devonian,Canadian Rocky Mountains: Implications for sequence stratigraphy of carbonate platform systems[J]. Journal of Sedimentary Research, 70(4): 913-936. Whalen M T,Day J,Eberli G P, et al. 2002. Microbial carbonates as indicators of environmental change and biotic crises in carbonate systems: Examples from the Late Devonian,Alberta basin,Canada[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 181(1-3): 127-151. Wignall P B. 2001. Large igneous provinces and mass extinctions[J]. Earth-Science Reviews, 53: 1-33. Wood R. 2000. Novel paleoecology of a postextinction reef:Famennian(Late Devonian)of the Canning basin,northwestern Australia[J]. Geology, 28(11): 987-990. Woods A D,Baud A. 2008. Anachronistic facies from a drowned Lower Triassic carbonate platform: Lower member of the Alwa Formation(Ba'id Exotic),Oman Mountains[J]. Sedimentary Geology, 209(1-4): 1-14. Xie S,Pancost R D,Wang Y, et al. 2010. Cyanobacterial blooms tied to volcanism during the 5 m.y. Permo-Triassic biotic crisis[J]. Geology, 38(5): 447-450. Yang H,Chen Z,Wang Y, et al. 2011. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology, 308(1-2): 111-128. Youngs B C. 1978. The petrology and depositional environments of the Middle Cambrian Wirrealpa and Aroona Creek limestones(South Australia)[J]. Journal of Sedimentary Petrology, 48(1): 63-74. Zhu M Y,Zhang J M,Li G X, et al. 2004. Evolution of C isotopes in the Cambrian of China: Implications for Cambrian subdivision and trilobite mass extinctions[J]. Geobios, 37(2): 287-301. Zhu M Y,Babcock L E,Peng S C. 2006. Advances in Cambrian stratigraphy and paleontology: Integrating correlation techniques,paleobiology,taphonomy and paleoenvironmental reconstruction[J]. Palaeo-world, 15(3-4): 217-222. Zhuravlev A Y,Wood R A. 1996. Anoxia as the cause of the mid-Early Cambrian(Botomian)extinction event[J]. Geology, 24: 311-314.