1 Department of Earth and Environmental Sciences,The University of Texas at Arlington,Arlington,TX 76019,USA; 2 China University of Petroleum(Beijing), Beijing 100083;
Abstract During a period of 82 years(1931-2013),39 genetic terms were introduced for various deposits. Of the 39 terms,only 10 are meaningful in understanding the true depositional origin(e.g.,turbidites),the remaining 29 are just jargons(e.g., seismites,tsunamites, etc.). The genetic term “seismites”,introduced by Seilacher(1969)for recognizing palaeoearthquakes in the sedimentary record,is a misnomer. The term was introduced in haste,based on an examination of a single exposure of the Miocene Monterey Formation(10,m)in California,without a rigorous scientific analysis. The fundamental problem is that earthquake is a triggering mechanism,not a depositional process. Type of triggers cannot be recognized in the ancient sedimentary record because evidence for triggers is not preserved by nature. Soft-sediment deformation structures(SSDS),commonly used as the criteria for interpreting seismites,are a product of liquefaction. However,liquefaction can be induced by any one of 21 triggers,which include earthquakes,meteorite impacts,tsunamis,sediment loading,among others. Brecciated clasts,typically associated with earthquake-induced deposits in the Dead Sea Basin,are also common depositional products of debris flows(i.e.,synsedimentary product unrelated to earthquakes). Also,various types of SSDS,such as duplex-like structures and clastic injections,can be explained by synsedimentary processes unrelated to earthquakes. Case studies of sandstone petroleum reservoirs worldwide,which include Gulf of Mexico,North Sea,Norwegian Sea,Nigeria,Equatorial Guinea,Gabon,and Bay of Bengal,reveal that there is compelling empirical evidence for sediment loading being the primary cause of SSDS. The Krishna-Godavari Basin,located on the eastern continental margin of India,is ideal for sediment failures by multiple triggering mechanisms where overpressure and liquefaction have led to multi-origin SSDS. Because tsunamis and meteorite impacts are important phenomena in developing extensive deposits,lateral extent of SSDS cannot be used as a unique distinguishing attribute of earthquakes. For these reasons,the genetic term “seismites”,which has no redeemable scientific value,is obsolete.
1 杜远生. 2011. 中国地震事件沉积研究的若干问题探讨. 古地理学报,13(6): 581-590. [Du Y S. 2011. Discussion about studies of earthquake event deposit in China. Journal of Palaeogeography(Chinese Edition),13(6): 581-590] 2 高红灿,郑荣才,陈发亮,朱宝兵,宋萍,刘显英,付晓宁. 2010. 东濮凹陷古近系沙河街组震积岩的认识及意义. 古地理学报,12(3): 384-398. [Gao H C,Zheng R C,Chen F L,Zhu B B,Song P,Liu X Y,Fu X N. 2010. Recognition and significance of seismites of the Paleogene Shahejie Formation in Dongpu Sag. Journal of Palaeogeography(Chinese Edition),12(3): 384-398] 3 龚一鸣. 1988. 风暴岩、震积岩、海啸岩: 几个名词含义的商榷. 地质论评,34(5): 481-482. [Gong Y M. 1988. Tempestite,seismite and tsunamite: A discussion of several sedimentological terms. Geological Review,34(5): 481-482] 4 邵宸,樊太亮,郭亚杰,成鹏,孙宇,王海荣. 2012. 松辽盆地大庆长垣上白垩统姚家组震积岩的发现及其地质意义. 古地理学报,14(6): 719-726. [Shao C,Fan T L,Guo Y J,Cheng P,Sun Y,Wang H R. 2012. Discovery of seismites in the Upper Cretaceous Yaojia Formation in Daqing Placanticline of Songliao Basin and its geological significance. Journal of Palaeogeography(Chinese Edition),14(6): 719-726] 5 宋天锐. 1988. 北京十三陵前寒武纪碳酸盐岩地层中的一套可能的地震-海啸序列. 科学通报,33:1121-1124. [Song T. 1988. A probable earthquake-tsunami sequence in Precambrian carbonate strata of the Ming Tombs District,Beijing. Chinese Science Bulletin,33: 1121-1124] 6 田媛,钟建华,王书宝,陶红胜,刘韶光,李勇,孙宁亮,邵珠福,倪良田,毛毳,葛玉柱,陈彬,曲俊利,王桂林. 2015. 鄂尔多斯盆地富县探区三叠系延长组震积岩及其地质意义. 古地理学报,17(4): 541-552. [Tian Y,Zhong J H,Wang S B,Tao H S,Liu S G,Li Y,Sun N L,Shao Z F,Ni L T,Mao C, Ge Y Z, Chen B, Qu J L, Wang G L. 2015. Seismites and their geological significances of the Triassic Yanchang Formation in Fuxian exploration area,Ordos Basin. Journal of Palaeogeography(Chinese Edition),17(4): 541-552] 7 Abreu V,Sullivan M,Pirmez C,Mohrig D. 2003. Lateral accretion packages(LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology,20: 631-648. 8 Ager D V. 1974. Storm deposits in the Jurassic of the Moroccan High Atlas. Palaeogeography,Palaeoclimatology,Palaeoecology,15: 83-93. 9 Agnon A,Migowski C,Marco S. 2006. Intraclast breccias in laminated sequences reviewed: Recorders of paleo-earthquakes. In: Enzel Y,Agnon A,Stein M(eds). Frontiers in Dead Sea paleoenvironmental research. GSA Special Pape r ,401: 195-214. 10 Alexander J I D,Watkinson A J. 1989. Microfolding in the Permian Castile formation: An example of geometric systems in multilayer folding,Texas and New Mexico. GSA Bulletin,101: 742-750. 11 Alfaro P. 1995. Neotectónica en la Cuenca del Bajo Segura(Cordillera Bética oriental). Ph.D. Thesis,Universidad de Alicante,Spain,p. 219. 12 Alfaro P,Delgado J,Estévez A,Molina J M,Moretti M,Soria J M. 2002. Liquefaction and fluidization structures in Messinian storm deposits(Bajo Segura Basin,Betic Cordillera,southern Spain). International Journal of Earth Sciences(Geologische Rundschau),91: 505-513. 13 Alfaro P,Gibert L,Moretti M,García-Tortosa F J,Sanz de Galdeano C,Jesús Galindo-Zaldívar J,López-Garrido A C. 2010. The significance of giant seismites in the Plio-Pleistocene Baza palaeo-lake(S Spain). Terra Nova,22: 172-179. 14 Allen C R. 1975. Geological criteria for evaluating seismicity. GSA Bulletin,86: 1041-1057. 15 Allen J R L. 1982. Sedimentary Structures,Vol. Ⅱ. Amsterdam: Elsevier, 663. 16 Allen J R L. 1984. Sedimentary Structures,their Character and Physical Basis. Amsterdam: Elsevier,Ⅰ,593 and Ⅱ,343-663. 17 Allen J R L. 1986. Earthquake magnitude-frequency,epicentral distance,and soft-sediment deformation in sedimentary basins. Sedimentary Geology,46: 67-75. 18 Alves T M. 2015. Submarine slide blocks and associated soft-sediment deformation in deep-water basins: A review. Marine and Petroleum Geology,67: 262-285. 19 Andersen J C Ø,Rasmussen H,Nielsen T F D,Rønsbo J G. 1998. The Triple Group and the Platinova gold and palladium reefs in the Skaergaard intrusion: Stratigraphic and petrographic relations. Economic Geology and the Bulletin of the Society of Economic Geologists,93: 488-509. 20 Antony M K,Murthy C S,Reddy G V,Rao K H. 1985. Sub-surface temperature oscillations and associated flow in the western Bay of Bengal. Estuarine,Coastal and Shelf Science,21: 823-834. 21 Arrhenius G. 1963. Pelagic Sediments. In: Hill M N(ed). The Sea,Vol. 3. New York: Wiley,655-727. 22 Barrett P J. 1966. Effects of the 1964 Alaskan earthquake on some shallow-water sediments in Prince William Sound,southeast Alaska. Journal of Sedimentary Petrology,36: 992-1006. 23 Barton R,Bird K,Hernndez J G,Grajales-Nishimura J M,Murillo-Muňetón G,Herber B,Weimer P,Koeberl C,Neumaier M,Schenk O,Stark J. 2009/2010. High impact reservoirs. Oilfield Review,21: 14-29. 24 Basilone L,Lena G,Gasparo-Morticelli M. 2014. Synsedimentary-tectonic,soft-sediment deformation and volcanism in the rifted Tethyan margin from the Upper Triassic-Middle Jurassic deep-water carbonates in Central Sicily. Sedimentary Geology,308: 63-79. 25 Bastia R,Nayak P,Singh P. 2006. Shelf Delta to Deepwater Basin: A Depositional Model for Krishna-Godavari Basin. American Association of Petroleum Geologists,International Conference,Perth,Australia,http: //www.searchanddiscovery. net/documents/2007/07011bastia/index.htm. 26 Bates R L,Jackson J A. 1980. Glossary of Geology(The Second Edition). Virginia: American Geological Institute,Falls Church,751. 27 Bea R G,Wright S G,Sicar P,Niedoroda A W. 1983. Wave induced slides in South Pass Block 70,Mississippi Delta. Journal of Geotechnical Engineering,109: 619-644. 28 Beck C. 2009. Lake sediments as Late Quaternary palaeo-seismic archives: Examples in north-western Alps and clues for earthquake-origin assessment of sedimentary disturbances. Earth-Science Reviews,96: 327-344. 29 Behl R J. 1999. Since Bramlette(1946): The Miocene Monterey Formation of California revisited. In: Moores E M,Sloan D,Stout D L(eds).Classic Cordilleran Concepts: A View from California. GSA Special Paper,338: 301-313. 30 Behrmann J H,Flemings P B,John C M. 2006. Rapid Sedimentation,Overpressure,and Focused Fluid Flow,Gulf of Mexico Continental Margin. Scientific Drilling,3: 1-17. 31 Boggs Jr S. 2001. Principles of Sedimentology and Stratigraphy,The Third Edition. New Jersey: Prentice Hall,726. 32 Bouma A H. 1962. Sedimentology of Some Flysch Deposits,A graphic Approach to Facies Interpretation. Amsterdam: Elsevier,168. 33 Bourgeois J. 2009. Geologic effects and records of tsunamis. In: Robinson A R,Bernard E N(eds). The Sea,Volume 15: Tsunamis. Harvard University Press,53-91. 34 Bourgeois J,Hansen T A,Wiberg P L,Kauffman E G. 1988. A tsunami deposit at the Cretaceous-Tertiary boundary in Texas. Science,241: 567-570. 35 Boyd R,Ruming K,Goodwin I,Sandstrom M,Schröder-Adams C. 2008. Highstand transport of coastal sand to the deep ocean: A case study from Fraser Island,southeast Australia. Geology,36: 15-18. 36 Boyer S E,Elliott D. 1982. Thrust systems. AAPG Bulletin,66: 1196-1230. 37 Bramlette M N. 1946. The Monterey formation of California and the origin of its siliceous rocks. USGS Professional Paper,212: 80. 38 Brawlower T J,Paull C K,Leckie R M. 1998. The Cretaceous-Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows. Geology,26: 331-334. 39 Briggs,Derek E G. 2014. Adolf Seilacher(1925-2014)Palaeontologist who pioneered analysis of trace fossils. Nature,509: 428. 40 Brönnimann C S. 2011. Effect of groundwater on landslide triggering. Ph.D. Thesis,École Polytechnique Fédérale de Lausanne,Lausanne,Switzerland,239. 41 Brooke C M,Trimble T J,Mackay T A. 1995. Mounded shallow gas sands from the Quaternary of the North Sea: Analogues for the formation of sand mounds in deep water Tertiary sediments?In: Hartley A J,Prosser D J(eds).Characterisation of Deep Marine Clastic Systems. London: Geological Society Special Publications 94,95-101. 42 Busby C J,Yip G,Blikra L,Renne P. 2002. Coastal landsliding and catastrophic sedimentation triggered by Cretaceous-Tertiary bolide impact: A pacific margin example?Geology,30: 687-690. 43 Cannon S H,Kirkham R M,Parise M. 2001. Wildfire-related debris-flow initiation processes,Storm King Mountain,Colorado. Geomorphology,39: 171-188. 44 Carter R M. 1975. A discussion and classification of subaqueous mass-transport with particular application to grain flow,slurry flow,and fluxoturbidites. Earth-Science Reviews,11: 145-177. 45 Chang A,Grimm K A. 1999. Speckled beds: Distinctive gravity-flow deposits in finely laminated diatomaceous sediments,Miocene Monterey Formation,California. Journal of Sedimentary Research,69: 122-134. 46 Chatterjee R,Singha D K,Paul S,Mukhopadhyay M. 2015. Overpressure zones in relation to in-situ stress for the Krishna-Godavari Basin,eastern continental margin of India: Implications for hydrocarbon prospectivity. In: Mukerjee S(ed).Petroleum Geosciences: Indian Contexts. Springer Geology,Springer International Publishing Switzerland,127-142. 47 Chu J H,Sampson C R,Levine A S,Fukada E. 2002. The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks,1945-2000. NRL Reference Number: NRL/MR/7540-02-16. http: //metocph.nmci.navy.mil/jtwc/best_tracks/TC_bt_report. 48 Cita M B,Camerlenghi A,Rimoldi B. 1996. Deep-sea tsunami deposits in the eastern Mediterranean: New evidence and depositional models. Sedimentary Geology,10: 155-173. 49 Claeys P,Kiessling W,Alvarez W. 2002. Distribution of Chicxulub ejecta at the Cretaceous-Tertiary boundary. In: Koeberl C,MacLeod K G(eds). Catastrophic Events and Mass Extinctions: Impacts and Beyond. GSA Special Paper,356: 55-68. 50 Coleman J M,Prior D B. 1982. Deltaic environments. In: Scholle P A,Spearing D(eds). Sandstone Depositional Environments. AAPG Memoir,31: 139-178. 51 Collinson J D. 1994. Sedimentary deformational structures. In: Maltman A(ed). The Geological Deformation of Sediments. London: Chapman & Hall,95-125. 52 Collot J Y,Lewis K,Lamarche G,Lallemand S. 2001. The giant Ruatoria debris avalanche on the northern Hikurangi margin,New Zealand: Result of oblique seamount subduction. Journal of Geophysical Research,106: 19271-19297. 53 Crawford F D. 1971. Petroleum potential of Santa Maria Province,California. In: Cram I H(ed). Future Petroleum Provinces of the United States: Their Geology and Potential. American Association of Petroleum Geologists,Tulsa: 316-328. 54 Damuth J E,Fairbridge R W. 1970. Equatorial Atlantic deep-sea sands and ice age aridity in tropical South America. GSA Bulletin,81: 585-601. 55 Davies G R. 1997. Interpretites: The new universal,non-genetic,non-descriptive classification of sedimentary products and environments. Canadian Society of Petroleum Geologists,Reservoir,24: 22-23. 56 Day S,Maslin M. 2005. Linking large impacts,gas hydrates,and carbon isotope excursions through widespread sediment liquefaction and continental slope failure: The example of the K-T boundary event. In: Kenkmann T,Hörz F,Deutsch A(eds). Large Meteorite Impacts Ⅲ,Geological Society of America Special Paper 384. Geological Society of America,Boulder,239-258. 57 Dewangan P,Ramprasad T,Ramana M V,Mazumdar A,Desa M,Badesab F K. 2010. Seabed morphology and gas venting features in the continental slope region of Krishna-Godavari Basin,Bay of Bengal: Implications in gas-hydrate exploration. Marine and Petroleum Geology,27: 1628-1641. 58 Dill R F. 1969. Earthquake effects on fill of Scripps Submarine Canyon. Geological Society of America Bulletin,80: 321-328. 59 Dillon W P,Zimmerman H P. 1970. Erosion by biological activity in two New England submarine canyons. Journal of Sedimentary Petrology,40: 542-547. 60 Dott Jr R H. 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin,47: 104-128. 61 Dysthe K,Krogstad H E,Müller P. 2008. Oceanic rogue waves. Annual Reviews of Fluid Mechanics,40: 287-310. 62 Dzulynski S,Ksiazkiewicz M,Kuenen Ph H. 1959. Turbidites in flysch of the Polish Carpathian Mountains. GSA Bulletin,70: 1089-1118. 63 Einsele G,Chough S K,Shiki T. 1996. Depositional events and their records: An introduction. Sedimentary Geology,104: 1-9. 64 Elverhøi A,De Blasio F,Butt F A,Issler D,Harbitz C B,Engvik L,Solheim A,Marr J G. 2002. Submarine mass-wasting on glacially-influenced continental slopes: Processes and dynamics. In: Dowdeswell J A,OCofaigh C(eds). Glacier-Influenced Sedimentation on High-Latitude Continental Margins. Geological Society Special Publications,London,203: 73-87. 65 Elverhøi A,Norem H,Anderson E S,Dowdeswell J A,Fossen I,Haflidason H,Kenyon N,Laberg J S,King E L,Sejrup H P,Solheim A,Vorren T O. 1997. On the origin and flow behavior of submarine slides on deep-sea fans along the Norwegian-Barents Sea continental margin. Geo-Marine Letters,17: 119-125. 66 Ettensohn F R,Rast N,Brett C E. 2002. Ancient Seismites. GSA Special Paper,359: 190. 67 Ettensohn R,Zhang C,Gao L,Lierman R T. 2011. Soft-sediment deformation in epicontinental carbonates as evidence of paleoseismicity with evidence for a possible new seimogenic indicator: Accordion folds. Sedimentary Geology,235: 222-233. 68 Ezquerro L,Moretti M,Liesa C L,Luzóna A,Simóna J L. 2015. Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault. Tectonophysics,655: 191-205. 69 Feldhausen P H,Stanley D J,Knight R J,Maldonado A. 1981. Homogenization of gravity emplaced muds and unifites: Models from the Hellenic Trench. In: Wezel F C(ed). Sedimentary Basins of Mediterranean Margins. Bologna: Tecnoprint,203-226. 70 Feng Z Z,Bao Z D,Zheng X J,Wang Y. 2016. Researches of soft-sediment deformation structures and seismites in China: A brief review. Journal of Palaeogeography,5:311-317. 71 Finn W D L,Siddharthan R,Martin G R. 1983. Response of seafloor to ocean waves. Journal of Geotechnical Engineering Division,ASCE,109: 556-572. 72 Fisher R V. 1983. Flow transformations in sediment gravity flows. Geology,11: 273-274. 73 Flint R F,Sanders J E,Rodges J. 1960. Diamictite: A substitute term for symmictite. GSA Bulletin,71: 1809-1810. 74 Forsberg C F,Solheim A,Kvalstad T J,Vaidya R,Mohanty S. 2007. Slope instability and mass transport deposits on the Godavari River Delta,East Indian margin from a regional geological perspective. In: Lykousis V,Sakellariou D,Locat J(eds). Submarine Mass Movements and Their Consequences: 3rd International Symposium,Advances in Natural and Technological Hazards Research. Springer,27: 19-27. 75 Gani R. 2004. From turbid to lucid: A straightforward approach to sediment gravity flows and their deposits. Sedimentary Record,3: 4-8. 76 Gaudin M,Berne S,Jouanneau J M,Palanques A,Puig P,Mulder T,Cirac P,Rabineau M,Imbert P. 2006. Massive sand beds attributed to deposition by dense water cascades in the Bourcart canyon head,Gulf of Lions(northwestern Mediterranean Sea). Marine Geology,234: 111-128. 77 Godfrey J D. 1954. The origin of ptygmatic structures. Journal of Geology,62: 375-387. 78 Goud K M,Bhavana P R. 2010. Prediction of high pressures in HP-HT well: A case study from KG Basin,east coast of India. 8th Biennial International Conference and Exposition on Petroleum Geophysics. Society of Petroleum Geophysics. Hydrerabad,India: 93. 79 Gradmann S,Beaumont C,Ings S J. 2012. Coupled fluid flow and sediment deformation in margin-scale salt-tectonic systems: 1. Development and application of simple,single-lithology models. Tectonics,31: TC4010. 80 Grajales-Nishimura J M,Cedillo-Pardo E,Rosales-Domínguez C,Morn-Zenteno D,Alvarez W,Claeys P,Ruíz-Morales J,García-Hernndez J,Padilla-Avila P,Snchez-Ríos A. 2000. Chicxulub impact: The origin of reservoir and seal facies in the southeastern Mexico oil fields. Geology,28: 307-310. 81 Greb S F,Ettensohn F R,Obermeier S F. 2002. Developing a classification scheme for seismites. GSA North-central and Southeastern Section Annual Meeting Abstracts with Programs. 82 Greene H G,Murai L Y,Watts P,Maher N A,Fisher M A,Paull C E,Eichhubl P. 2006. Submarine landslides in the Santa Barbara Channel as potential tsunami sources. Natural Hazards and Earth System Sciences,6: 63-88. 83 Grimm K A,Orange D L. 1997. Synsedimentary fracturing,fluid migration,and subaqueous mass wasting;intrastratal microfractured zones in laminated diatomaceous sediments,Miocene Monterey Formation,California,USA. Journal of Sedimentary Research,67: 601-613. 84 Hale R P,Nittrouer C A,James T,Liu J T,Keil R G,Ogston A S. 2012. Effects of a major typhoon on sediment accumulation in Fangliao Submarine Canyon,SW Taiwan. Marine Geology,326-328: 116-130. 85 Hampton M A. 1972. The role of subaqueous debris flows in generating turbidity currents. Journal of Sedimentary Petrology,42: 775-793. 86 Harland W B,Herod K N,Krinsley D H. 1966. The definition and identification of tills and tillites. Earth-Science Reviews,2: 225-256. 87 He B,Qiao X. 2015. Advances and overview of the study on paleo-earthquake events: A review of seismites. Acta Geologica Sinica(English Edition),89: 1702-1746. 88 Heezen B C,Ewing M. 1952. Turbidity currents and submarine slumps,and the 1929 Grand Banks earthquake. American Journal Science,250: 849-873. 89 Helwig J. 1970. Slump folds and early structures,northeastern Newfoundland Appalachians. Journal of Geology,78: 172-187. 90 Henstock T J,McNeill L C,Tappin D R. 2006. Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes?Geology,34: 485-488. 91 Hieke W. 1984. A thick Holocene Homogenite from the Ionian Abyssal Plain(Eastern Mediterranean). Marine Geology,55: 63-78. 92 Hiscott R N. 1979. Clastic sills and dikes associated with deep-water sandstones,Tourelle Formation,Ordovician,Quebec. Journal of Sedimentary Petrology,49: 1-10. 93 Hollister C D. 1967. Sediment distribution and deep circulation in the western North Atlantic. Ph.D. Thesis,Columbia University,New York,467. 94 Hsü K J. 1989. Physical Principles of Sedimentology. New York: Springer-Verlag,233. 95 Hurst A,Cartwright J. 2007. Sand injectites: Implications for hydrocarbon exploration. AAPG Memoir,87: 288. 96 Isaacs C M,Pisciotto K A,Garrison R E. 1983. Facies and diagenesis of the Miocene Monterey Formation,California: A summary. In: Siever R,Iijima A,Hein J R(eds). Siliceous Deposits in the Pacific Region. Developments in Sedimentology,36: 247-282. 97 Jain C K,Yerramilli S S,Yerramilli R C. 2012. A case study on blowout and its control in Krishna-Godavari(KG)Basin,East Coast of India: Safety and environmental perspective. Journal of Environment and Earth Science,2: 49-60. 98 Jewell H E,Ettensohn F R. 2004. An ancient seismite response to Taconian far-field forces: The Cane Run Bed,Upper Ordovician(Trenton)Lexington Limestone,Central Kentucky(USA). Journal of Geodynamics,37: 487-511. 99 Jolly R J H,Lonergan L. 2002. Mechanisms and control on the formation of sand intrusions. Journal of the Geological Society,London,159: 605-617. 100 Kale M G,Pundalik A S,Duraiswami R A,Karmalkar N R. 2016. Soft sediment deformation structures from Khari River section of Rudramata member,Jhuran Formation,Kutch: A testimony of Jurassic seismites. Journal of the Geological Society of India,87: 194-204. 101 Kastens K A,Cita M B. 1981. Tsunami induced sediment transport in the Abyssal Mediterranean Sea. GSA Bulletin,89: 591-604. 102 Kearey P,Klepeis K A,Vine F J. 2009. Global Tectonics(3 rd Edition). Wiley-Blackwell,496. 103 Kennett J P,Fackler-Adams B N. 2000. Relationship of clathrate instability to sediment deformation in the Upper Neogene of California. Geology,28: 215-218 104 Khvorova I V. 1978. Terrigenous clastic formations of oceans and certain seas. Lithologiya i Polenzye Iskopaemye,3: 3-24. 105 Kirkland D W,Anderson R Y. 1970. Microfolding in the Castile and Todilto Evaporites,Texas and New Mexico. GSA Bulletin,81: 3259-3282. 106 Kirkland D W,Denison R E,Dean W E. 2000. Parent brine of the Castile Evaporites(Upper Permian),Texas and New Mexico. Journal of Sedimentary Research,70: 749-761. 107 Klein G D. 1971. A sedimentary model for determining paleotidal range. GSA Bulletin,82: 2585-2592. 108 Klein G D. 1998. Clastic tidalites: A partial retrospective view. In: Alexander C R,Davis R A,Henry V J(eds). Tidalites: Processes and Products. Special Publication 61,SEPM,Tulsa: 5-14. 109 Kuenen Ph H. 1948. Slumping in the Carboniferous rocks of Pembrokeshire. The Quarterly Journal of the Geological Society of London,104: 365-380. 110 Kuenen Ph H. 1957. Sole markings of graded greywacke beds. Journal of Geology,65: 231-258. 111 Kuenen Ph H. 1967. Emplacement of flysch-type sand beds. Sedimentology,9: 203-243. 112 Kuenen Ph H,Migliorini C I. 1950. Turbidity currents as a cause of graded bedding. Journal of Geology,58: 91-127. 113 Kuribayashi E,Tatsuoka F. 1975. Brief review of liquefaction during earthquakes in Japan. Soils Found,15: 81-92. 114 Labaume P,Mutti E,Seguret M. 1987. Megaturbidites: A depositional model from the Eocene of the SW-Pyrenean foreland basin,Spain. Geo-Marine Letters,7: 91-101. 115 LaFond K G,Rao C P. 1954. Vertical oscillations of tidal periods in the temperature structure of the sea. Andhra University Memoirs,1: 109-116. 116 Lawson D E. 1981. Mobilization,movement and deposition of active subaerial sediment flows,Matanuska Glacier,Alaska. Journal of Geology,90: 279-300. 117 Lawton T F,Shipley K W,Aschoff J L,Giles K A,Vega F J. 2005. Basinward transport of Chicxulub ejecta by tsunami-induced backflow,La Popa basin,northeastern Mexico,and its implications for distribution of impact-related deposits flanking the Gulf of Mexico. Geology,33: 81-84. 118 Le Heron D P,Etiene J L. 2005. A complex subglacial clastic dyke swarm,Sólheimajökull,Southern Iceland. Sedimentary Geology,181: 25-37. 119 Le Roux J P,Gómez C,Fenner J,Middleton H. 2004. Sedimentological processes in a scarp-controlled rocky shoreline to upper continental slope environment,as revealed by unusual sedimentary features in the Neogene Coquimbo Formation,north-central Chile. Sedimentary Geology,165: 67-92. 120 Le Roux J P,Nielsen S N,Kemnitz H,Henriquez A. 2008. A Pliocene mega-tsunami deposit and associated features in the Ranquil Formation,southern Chile. Sedimentary Geology,203: 164-180. 121 Lee F H,Foo S L. 1990. Undrained cyclic loading on a saturated dense sand stratum. Géotechnique,40: 451-465. 122 Lisitsyn A P. 1986. Avalanche sedimentation in seas and oceans. Part V: Special mechanisms of transport of sedimentary matter and formation of sedimentary bodies of the second global level. Gravitites,their classes and series. Lithologiya i Polenzye Iskopaemye,4: 3-28. 123 Locat J,Lee H J. 2002. Submarine landslides,advances and challenges. Canadian Geotechnical Journal,39: 193-212. 124 Logan W E. 1863. Report on the Geology of Canada. Montreal,Canada: John Lovell,464. 125 Lowe D R. 1975. Water escape structures in coarse grained sediments. Sedimentology,22: 157-204. 126 Lowe D R. 1979. Sediment gravity flows: Their classification,and some problems of application to natural flows and deposits. In: Doyle L J,Pilkey O H(eds). Geology of Continental Slopes. SEPM Special Publication,27: 75-82. 127 Lowe D R. 1982. Sediment gravity flows,Ⅱ: Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology,52: 279-297. 128 Madsen O S. 1978. Wave-induced pore pressures and effective stresses in a porous bed. Géotecnique,28: 377-393. 129 Malkawi A I H,Alawneh A S. 2000. Paleoearthquake features as indicators of potential earthquake activities in the Karameh Dam Site. Natural Hazards,22: 1-16. 130 Maltman A. 1984. On the term soft-sediment deformation. Journal of Structural Geology,6: 589-592. 131 Maltman A. 1994a. Introduction and overview. In: Maltman A(ed). The Geological Deformation of Sediments. London: Chapman & Hall,1-35. 132 Maltman A. 1994b. Deformation structures preserved in the rocks. In: Maltman A(ed). The Geological Deformation of Sediments. London: Chapman & Hall,261-307. 133 Marr J G,Harff P A,Shanmugam G,Parker G. 2001. Experiments on subaqueous sandy gravity flows,the role of clay and water content in flow dynamics and depositional structures. GSA Bulletin,113: 1377-1386. 134 Martín-Chivelet J,Palma R M,López-Gómez J,Kietzmann D A. 2011. Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites(Neuquén Basin,Argentina). Sedimentary Geology,235: 210-221. 135 Mascarenhas A. 2004. Oceanographic validity of buffer zones for the east coast of India: A hydrometeorological perspective. Current Science,86: 399-406. 136 Maslin M,Owen M,Day S,Long D. 2004. Linking continental slope failures and climate change: Testing the gun hypothesis. Geology,32: 53-56. 137 Mazumder R,van Loon A J,Arima M. 2006. Soft-sediment deformation structures in the Earths oldest seismites. Sedimentary Geology,186: 19-26. 138 Mazumder R,van Loon A J,Malviya V P,Arima M,Ogawa Y. 2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes(Miura Peninsula,Japan). Sedimentary Geology,in press. 139 Merriam D F,Neuhauser K R. 2009. Seismite indicates Pleistocene earthquake activity in Ellis County,Kansas. Transactions of the Kansas Academy of Science,112: 109-112. 140 Meyer D,Zarra L,Yun J. 2007. From Baha to Jack: Evolution of the Lower Tertiary Wilcox Trend in the Deepwater Gulf of Mexico. The Sedimentary Record,5: 4-9. 141 Middleton G V. 1993. Sediment deposition from turbidity currents. Annual Review of Earth and Planetary Sciences,21: 89-114. 142 Middleton G V,Hampton M A. 1973. Sediment gravity flows: Mechanics of flow and deposition. In: Middleton G V,Bouma A H(eds). Turbidites and Deep-Water Sedimentation. Los Angeles,California: Pacific section SEPM,1-38. 143 Mills P C. 1983. Genesis and diagnostic value of soft-sediment deformation structures: A review. Sedimentary Geology,35: 83-104. 144 Mohindra R,Bagati T N. 1996. Seismically induced soft-sediment structures(seismites)around Sumdo in the lower Spiti valley(Tethys Himalaya). Sedimentary Geology,101: 69-83. 145 Montenat C,Barrier P,Ott dEstevou P,Hibsch C. 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology,196: 5-30. 146 Moretti M. 2000. Soft-sediment deformation structures interpreted as seismites in Middle-Late Pleistocene Aeolian deposits(Apulian foreland,southern Italy). Sedimentary Geology,135: 167-179. 147 Moretti M,Sabato L. 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant?Arcangelo Basin(Southern Italy): Seismic shock vs. overloading. Sedimentary Geology,196: 31-45. 148 Moretti M,van Loon A J. 2014. Restrictions to the application of‘diagnostic criteria for recognizing ancient seismites. Journal of Palaeogeography,3: 162-173. 149 Mosher D C,Shipp R C,Moscardelli L,Chaytor J D,Baxter C D P,Lee H J,Urgeles R. 2010. Submarine Mass Movements and Their Consequences,Advances in Natural and Technological Hazards Research. Springer,28: 786. 150 Mulder T,Migeon S,Savoye B,Faugères J-C. 2002. Reply to discussion by Shanmugam on Mulder et al .(2001,Geo-Marine Letters,21: 86-93)Inversely graded turbidite sequences in the deep Mediterranean. A record of deposits from flood-generated turbidity currents?Geo-Marine Letters,22: 112-120. 151 Mulder T,Philippe R,Faugères J-C,Gérard J. 2011. Reply to the Discussion by Roger Higgs on‘Hummocky cross-stratification-like structures in deep-sea turbidites: Upper Cretaceous Basque basins(Western Pyrenees,France)’by Mulder et al .,Sedimentology,56,997-1015. Sedimentology,58: 671-577. 152 Mutti E. 1992. Turbidite Sandstones,Special Publication. Milan: Agip,275. 153 Mutti E,Ricci Lucchi F,Segure T M,Zanzucchi G. 1984. Seismoturbidites: A new group of resedimented deposits. In: Cita M B,Ricci Lucchi F(eds). Seismicity and Sedimentation. Amsterdam: Elsevier Scientific Publication,103-116. 154 Mutti E,Tinterri R,Remacha E,Mavilla N,Angella S,Fava L. 1999. An introduction to the analysis of ancient turbidite basins from an outcrop perspective. AAPG Continuing Education Course Note Series 39,Tulsa,Oklahoma,61. 155 Narasimha Rao T V. 2001. Time-dependent stratification in the Gauthami-Godavari estuary. Estuaries,24: 18-29. 156 Natland M L. 1967. New classification of water-laid clastic sediments. AAPG Bulletin,51: 476. 157 Ni L T,Zhong J H,Shao Z F,Li Y,Mao C,Liu S. 2015. Characteristics,genesis,and sedimentary environment of duplex-like structures in the Jurassic sediments of Western Qaidam Basin,China. Journal of Earth Science,26: 677-689. 158 NOAA(National Oceanic and Atmospheric Administration). 2005. NOAA News Online,Story 2365. URL: Http: //www.noaanews.noaa.gov/stories2005/s2365.htm. 159 Norris R D,Firth J V. 2002. Mass wasting of Atlantic continental margins following the Chicxulub impact event. In: Koeberl C,MacLeod K G(eds). Catastrophic Events and Mass Extinctions: Impacts and Beyond. GSA Special Paper,356: 79-95. 160 Obermeier S,Pond E,Olson S,Green R. 2002. Paleoliquefaction studies in continental settings. GSA Special Paper,359: 13-27. 161 Obermeier S F. 1989. The New Madrid earthquakes: An engineering-geologic interpretation of relict liquefaction features. U.S. geological survey professional paper,1336-B: 114. 162 Obermeier S F. 1996. Use of liquefaction-induced features for paleoseismic analysis: An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology,44: 1-76. 163 Obermeier S F. 1998. Seismic liquefaction features: Examples from paleoseismic investigations in the continental United States. U.S. Geological Survey,Open-File Report,98-488. http: //pubs.usgs.gov/of/1998/of 98-488/. 164 Obermeier S F,Olson S M,Green R A. 2005. Field occurrences of liquefaction-induced features: A primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology,76: 209-234. 165 Odonne F,Callot P,Debroas E J,Sempere T,Hoareau G,Maillard A. 2011. Soft-sediment deformation from submarine sliding: Favourable conditions and triggering mechanisms in examples from the Eocene Sobrarbe delta(Ainsa,Spanish Pyrenees)and the Mid-Cretaceous Ayabacas Formation(Andes of Peru). Sedimentary Geology,235: 234-248. 166 Okusa S. 1985. Wave-induced stresses in unsaturated submarine sediments. Géotechnique,35: 517-532. 167 Owen G. 1987. Deformation processes in unconsolidated sands. In: Jones M E,Preston R M F(eds). Deformation of Sediments and Sedimentary Rocks. Geological Society,London,Special Publications,29: 11-24. 168 Owen G,Moretti M. 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology,235: 141-147. 169 Owen G,Moretti M,Alfaro P. 2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology,235: 133-140. 170 Papadopoulos G A,Lefkopoulos G. 1993. Magnitude-distance relation for liquefaction in soil from earthquakes. Bulletin of the Seismological Society of America,83: 925-938. 171 Peterson G L. 1966. Structural interpretation of sandstone dikes,Northwest Sacramento Valley,California. GSA Bulletin,77: 833-842. 172 Petley D. 2012. Global patterns of loss of life from landslides. Geology,40: 927-930. 173 Pine