Abstract A series of diagenetic reaction will occur after hydrocarbon-bearing fluid,which is rich in organic acids,entered the reservoir from source rock. The study indicates that six diagenetic phenomena were closely related to hydrocarbon activities,namely dissolution of acidic hydrocarbon fluid,montmorillonite dehydration and illitization,iron ion impregnation of carbonate mineral,track of asphalt and iron-concretion,the formation of authigenic kaolinite and water consumption,bottom interlayer distribution of carbonate cementation layer. These special diagenetic phenomena were characteristic identification signals in petroleum-bearing basin which indicate the degree of first invasion,the direction and trajectory of hydrocarbon migration,and the industrial concentration. Those have great reference value for finally confirming the accumulation place. Based on the hydrocarbon-traced diagenetic minerals in petroleum-bearing basin,a clastic diagenetic evolution pattern was established. The evolution pattern can guide the exploration of complicated reservoirs in Shengli oil-field,and can also provide reference for determining the effectiveness of reservoirs in the future.
About author: Zhang Shou-Peng, born in 1963, is a professorical engineer with Ph.D. degree. Now he is a senior expert of Shengli Oilfield of SINOPEC. He is mainly engaged in evaluation of oil and gas reservoirs.
Cite this article:
Zhang Shou-Peng,Li Bo. Diagenesis and evolution characteristics of hydrocarbon-traced minerals in Dongying sag, Bohai Bay Basin[J]. JOPC, 2018, 20(6): 1043-1052.
Zhang Shou-Peng,Li Bo. Diagenesis and evolution characteristics of hydrocarbon-traced minerals in Dongying sag, Bohai Bay Basin[J]. JOPC, 2018, 20(6): 1043-1052.
[1] 蔡进功,张枝焕,朱筱敏,谢忠怀,李艳霞,刘洪军,袁东山. 2003. 东营凹陷烃类充注与储集层化学成岩作用. 石油勘探与开发, 30(3): 79-83. [Cai J G,Zhang Z H,Zhu X M,Xie Z H,Li Y X,Liu H J,Yuan D S.2003. Hydrocarbon filling and chemical diagenesis evolution of the clastic reservoir of the Paleogene in Dongying Sag. Petroleum Exploration and Development, 30(3): 79-83] [2] 曹剑,张义杰,胡文瑄,张越迁,唐勇,姚素平,陶国亮. 2005. 油气储集层自生高岭石发育特点及其对物性的影响. 矿物学报, 25(4): 367-373. [Cao J,Zhang Y J,Hu W X,Zhang Y Q,Tang Y,Yao S P,Tao G L.2005. Characteristics of authigenic kaolinite in the reservoirs and their effects on physical properties. Acta Mineralogica Sinica, 25(4): 367-373] [3] 曹青. 2013. 鄂尔多斯盆地东部上古生界致密储集层成岩作用特征及其与天然气成藏耦合关系. 西北大学. [Cao Q.2013. Characteristics of diagenesis-gas accumulation for Upper Paleozoic tight reservoir in Eastern Ordos Basin.Northwest University] [4] 陈鑫,钟建华,袁静,聂可可,杨玉平. 2009. 渤南洼陷古近系高岭石发育特征及转化机理. 石油勘探与开发, 36(4): 456-462. [Chen X,Zhong J H,Yuan J,Nie K K,Yang Y P.2009. Development and formation of Paleogene kaolinite,Bonan subsag. Petroleum Exploration and Development, 36(4): 456-462] [5] 李保利. 2010. 碎屑岩中长石蚀变形成次生孔隙的试验研究. 电子显微学报, 29(6): 516-520. [Li B L.2010. Feldspar alteration of clastic rock form secondary pore experimental study. Journal of Chinese Electron Microscopy Society, 29(6): 516-520] [6] 李军亮. 2008. 渤海湾盆地东营凹陷深层砂砾岩储集层成岩演化特征. 石油实验地质, 30(3): 252-255. [Li J L.2008. Diagenesis evolution characteristics of deep buried glutenite reservoir bed in the dongying sag,the Bohai Bay Basin. Petroleum Geology & Experiment, 30(3): 252-255] [7] 李思田,潘元林,陆永潮,任建业,谢习龙,王华. 2002. 断陷湖盆隐蔽油藏预测及勘探的关键技术: 高精度地震探测基础上的层厚地层学研究. 地球科学: 中国地质大学学报, 27(5): 592-598. [Li S T,Pan Y L,Lu Y C,Ren J Y,Xie X N,Wang H.2002. Key technology of prospecting and exploration of subtle traps in lacustrine fault basins: Sequence stratigraphic researches on the basis of high resolution seismic survey. Earth Science-Journal of China University of Geosciences, 27(5): 592-598] [8] 马奔奔,操应长,王艳忠,贾艳聪,张少敏. 2015. 渤南洼陷北部陡坡带沙四上亚段成岩演化及其对储集层物性的影响. 沉积学报, 33(1): 170-182. [Ma B B,Cao Y C,Wang Y Z,Jia Y C,Zhang S M.2015. Diagenetic evolution and its influence on physical properties of Es4s reservoir in the northern steep zone of the Bonan sag. Acta Sedimentologica Sinica, 33(1): 170-182. [9] 孟昱璋,刘鹏. 2015. 济阳坳陷渤南洼陷沙四上亚段碎屑岩成岩作用及其孔隙演化. 中国石油勘探, 20(6): 14-21. [Meng Y Z,Liu P.2015. Diagenesis and porous development of clastic in Upper Part of 4th Member of Shahejie Formation in Bonan Sag of Jiyang Depression. China Petroleum Exploration, 20(6): 14-21] [10] 王朴,魏广振,谢忠怀,郝运轻,刘宝军. 2008. 济阳坳陷第三系不同成因类型砂岩体孔隙分布特征及孔隙演化史: 以孤东油田、胜坨油田、东辛油田为例. 石油地质与工程, 22(1): 9-11. [Wang P,Wei G Z,Xie Z H,Hao Y Q,Liu B J.2008. Pore distribution characteristics and evolution history of Tertiary sand bodies of different genetic types in Jiyang depression: Taking Gudong oilfield,Shengtuo oilfield,and Dongxin oilfield as an examples. Petroleum Geology and Engineering, 22(1): 9-11] [11] 王伟庆,张守鹏,谢忠怀,刘宁. 2008. 示烃成岩矿物与油气成藏的关系: 以东营凹陷为例. 油气地质与采收率, 15(1): 14-17. [Wang W Q,Zhang S P,Xie Z H,Liu N.2008. Discussion on the relationship between hydrocarbon-traced diagenetic minerals and reservoirs formation: Case study in Dongying Depression. Petroleum Geology and Recovery Efficiency, 15(1): 14-17] [12] 文华国,郑荣才,陈洪德,方艳兵,陈志华,郑超,李虹. 2007. 鄂尔多斯盆地白豹—华池地区长6砂岩储集层特征. 石油学报, 28(4): 47-51. [Wen H G,Zheng R C,Chen H D,Fang Y B,Chen Z H,Zheng C,Li H.2007. Characteristics of Chang 6 sandstone reservoir in Baibao-Huachi region of Ordos Basin. Acta Petrolei Sinica, 28(4): 47-51] [13] 于兴河,李胜利. 2009. 碎屑岩系油气储集层沉积学的发展历程与热点问题思考. 沉积学报, 27(5): 881-895. [Yu X H,Li S L.2009. The Development and hotspot problems of clastic petroleum reservoir sedimentology. Acta Sedimentologica Sinica, 27(5): 881-895] [14] 于志超,刘可禹,赵孟军,柳少波,卓勤功,鲁雪松. 2016. 库车凹陷克拉2气田储集层成岩作用和油气充注特征. 地球科学: 中国地质大学学报, 41(3): 533-545. [Yu Z C,Liu K Y,Zhao M J,Liu S B,Zhuo Q G,Lu X S.2016. Characterization of diagenesis and the petroleum charge in Kela 2 Gas Field,Kuqa Depression,Tarim Basin.Earth Science-Journal of China University of Geosciences, 41(3): 533-545] [15] 张善文. 2007. 成岩过程中的“耗水作用”及其石油地质意义. 沉积学报, 25(5): 701-707. [Zhang S W.2007. “Water Consumption”in diagenetic stage and its petroleum geological significance. Acta Sedimentologica Sinica, 25(5): 701-707] [16] 张善文,袁静,隋风贵,陈鑫. 2008. 东营凹陷北部沙河街组四段深部储集层多重成岩环境及演化模式. 地质科学, 43(3): 576-587. [Zhang S W,Yuan J,Sui F G,Chen X.2008. Multiple diagenetic environments and evolvement model in deep formation of the 4th Member,Shahejie Formation in the northern Dongying Sag. Chinese Journal of Geology, 43(3): 576-587] [17] 张少敏,操应长,王艳忠,杨田,王尉,王思佳. 2017. 牛庄洼陷西南部沙三中亚段浊积岩储集层成岩作用与物性演化. 中国石油大学学报: 自然科学版, 41(2): 1-11. [Zhang S M,Cao Y C,Wang Y Z,Yang T,Wang W,Wang S J.2017. Diagenesis and physical properties evolution of turbidite reservoirs in Es3z of Niuzhuang sag,Dongying Depression. Journal of China University of Petroleum, 41(2): 1-11] [18] 赵杏媛,张有瑜. 1990. 黏土矿物与黏土矿物分析. 北京: 海洋出版社,67-69. [Zhao X Y,Zhang Y Y.1990. Clay Minerals and Clay Minerals Testing. Beijing: Ocean Press,67-69] [19] 周廷全,鲜本忠,林会喜,范振锋. 2007. 车镇凹陷陡坡带古近系湖底扇沉积规律及储集层特征. 油气地质与采收率, 14(2): 23-27. [Zhou T Q,Xian B Z,Lin H X,Fan Z F.2007. Sedimentary rules and reservoir characteristics of sublacustrine fan in Paleogene in steep slope of Chezhen Sag. Petroleum Geology and Recovery Efficiency, 14(2): 23-27] [20] 周翔,何生,陈召佑,王芙蓉,周思宾,刘萍. 2016. 鄂尔多斯盆地代家坪地区延长组8段低孔渗砂岩成岩作用及成岩相. 石油与天然气地质, 37(2): 155-164. [Zhou X,He S,Chen Z Y,Wang F R,Zhou S B,Liu P.2016. Diagenesis and diagenetic facies of low porosity and permeability sandstone in Member 8 of the Yanchang Formation in Daijiaping area,Ordos Basin. Oil & Gas Geology, 37(2): 155-164] [21] 朱筱敏,米立军,钟大康,张琴,张善文,吕希学. 2006. 济阳坳陷古近系成岩作用及其对储集层质量的影响. 古地理学报, 8(3): 301-307. [Zhu X M,Mi L J,Zhong D K,Zhang Q,Zhang S W,Lü X X.2006. Paleogene diagenesis and its control on reservoir quality in Jiyang Depression. Journal of Palaeogeography(Chinese Edition), 8(3): 301-307] [22] Barth T,Bjφrlykke K.1993. Organic acids from source rock maturation: Generation potentials,transport mechanisms and relevance for mineral diagenesis. Applied Geochemistry, 8(4): 325-337. [23] James R B,Franks S G.1979. Clay diagenesis in wilcox sandstones of southwest Texas: Implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Research, 49: 55-70. [24] Surdam R C,Boese S W,Crossey L J.1984. The chemistry of secondary porosity: Part 2. Aspects of porosity modification. McDonald D A, Surdam R C(eds.). Clastic diagenesis. Tulsa,Okla: American Association of Petroleum geologists, 127-149.