Evidence of multiepisode dissolution of meteoric fluids of the Middle and Upper Cambrian carbonate rocks of Sanhuichang outcrop,Nanchuan area,Chongqing
Qian Yi-Xiong1, He Zhi-Liang2, Li Guo-Rong3, Dong Shao-Feng1, Peng Shou-Tao2, Wo Yu-Jin2, Zhang Jun-Tao2, Jiao Cun-Li2, Zhang Wen-Tao1
1 Wuxi Institute,Exploration & Production Research Institute,SINOPEC,Jiangsu Wuxi 214151,China; 2 Exploration & Development Research Institute,SINOPEC,Beijing 100083,China; 3 Chengdu University of Technology,Chengdu 610059,China
Abstract How to identify and evaluate the influences of multiepisodes of tectonic activities and diagenesis on Paleozoic carbonate rocks is a fundamental and challenging issue for reservoirs formation mechanism study. It would be valuable to unravel the important information of diagenesis fluid evolution and its relationship with formation of oil and gas pools. The well-preserved outcrop of Cambrian carbonate rocks in SanHuiChang,Nanchuan,Chongqing is an idea natural laboratory to study the depositional and diagenesis history of Paleozoic carbonate. The petrographic and geochemical analyses have demonstrated that the Cambrian carbonate rocks have experienced multiepisodes of diagenesis,including the early penecontemporaneous diagenesis in fresh and marine water,the shallow buried-diagenesis in mixed freshwater and seawater or formation water,karstification in meteoric weathering related to the later Caledonian and Hercynian tectonic activities,the middle and deep buried-diagenesis in formation water or hydrothermal fluid and karstification in meteoric weathering in Yanshan and Himalayan period. In different episodes of diagenesis,the meteoric fresh water has played different roles. In the early stage of meteoric diagenesis,the shallowing-upward high-frequency sequence boundary is characterized by molds,dissolved-pores related to fenestral and fabric-selective pores,less negative excursion of δ13C & δ18O and similar87Sr/86Sr of cement and matrix when compared to the coeval sea water,non-luminescent cements(CL)and a few small liquor phase inclusions in cements. In the middle stage of diagenesis,the karstification has been developed in subaerial exposure period in Caledonian and Hercynian,which is characterized by non-fabric-selective pores and vugs,a more pervasive non-luminescent of middle and coarse calcites or dull orange dolomites with δ18O and δ13C depletion and positive values of87Sr/86Sr,oxygenated hydrocarbons(asphalt)and hydrocarbon-bearing,and the low-temperature immiscible inclusions in cements and filling minerals. In addition,this stage of diagenesis has experienced post-meteoric weathering,overprinted and modified by later deep burial diagenesis. In the late stage of diagenesis,the last karstification happened in meteoric weathering environment in Yanshan and Himalayan period,which is documented by isolate-distribution of pores and vugs and fractures with mostly filled by calcites and clay,precipitation of the coarse and giant calcites crystal with δ18O and δ13C strongly negative excursion($\delta^{13}C_{PDB}$=-4.6‰~-23.4‰,$\delta^{18}C_{PDB}$=-8.6‰~-17.8‰),and the low-temperature immiscible inclusions(homogenization temperature <28.5℃),indicating a diagenesis triggered by meteoric fluid interacted with soil-related(carbon)organic acids or biological methane bacteria activities.
Fund:Co-funded by the National Key Basic Research Project of China(No.2017YFC0603103),Natural Science Joint Foundation of China(No.U1663209)and National Science and Technology Major Projects of China(No.2011ZX05005-023)
About author: Qian Yi-Xiong,born in 1962,is a professional engineer. He is engaged in researches of carbonate rocks sedimentation and reservoir characterization. E-mail: qyx9167@vip.sina.com.
Cite this article:
Qian Yi-Xiong,He Zhi-Liang,Li Guo-Rong et al. Evidence of multiepisode dissolution of meteoric fluids of the Middle and Upper Cambrian carbonate rocks of Sanhuichang outcrop,Nanchuan area,Chongqing[J]. JOPC, 2019, 21(2): 278-292.
Qian Yi-Xiong,He Zhi-Liang,Li Guo-Rong et al. Evidence of multiepisode dissolution of meteoric fluids of the Middle and Upper Cambrian carbonate rocks of Sanhuichang outcrop,Nanchuan area,Chongqing[J]. JOPC, 2019, 21(2): 278-292.
[1] 陈学时,易万霞,卢文忠. 2004. 中国油气田古岩溶与油气储层. 沉积学报, 22(2): 244-253. [Chen X S,Yi W X,Lu W Z.2004. The paleokarst reservoirs of oil and gas fields in China. Acta Sedimentologica Sinica, 22(2): 244-253] [2] 陈宗清. 2013. 论四川盆地下古生界5次地壳运动与油气勘探. 中国石油勘探, 18(5): 15-23. [Chen Z Q.2013. On five crustal movements and petroleum exploration in Lower Paleozoic,Sichuan Basin. Petroleum Exploration and Development, 18(5): 15-23] [3] 黄思静,石和,毛晓东,张萌,沈立成,武文慧. 2002. 重庆秀山寒武系锶同位素演化曲线及全球对比. 地质论评, 48(5): 509-516. [Huang S J,Shi H,Mao X D,Zhang M,Shen L C,Wu W H.2002. Evolution of Sr isotopes of the Cambrian sections in Xiushan,Chongqing,and related global correlation. Geological Review, 48(5): 509-516] [4] 黄文明,刘树根,张长俊,王国芝,徐国盛,雍自权,马文辛. 2009. 四川盆地寒武系储层特征及优质储层形成机理. 石油与天然气地质, 30(5): 566-575. [Huang W M,Liu S G,Zhang C J,Wang G Z,Xu G S,Yong Z Q,Ma W X.2009. Reservoir characteristics and formation mechanism of the high quality Cambrian reservoirs in Sichuan Basin. Oil & Gas Geology, 30(5): 566-575] [5] 黄文明,刘树根,马文辛,王国芝,张长俊,曾祥亮,宋光永. 2011. 深层海相碳酸盐岩优质储层的形成、保存和破坏机制: 以四川盆地震旦系—志留系为例. 地质科学, 46(3): 875-890. [Hang W M,Liu S G,Ma W X,Wang G Z,Zhang C J,Zeng X L,Song G Y.2011. Formation,preservation and damage mechanism of marine deep carbonate high quality reservoir rocks: Illustrated by Sinian system to Silurian in Sichuan Basin. Chinese Journal of Geology, 46(3): 875-890] [6] 金民东,曾伟,谭秀成,李凌,李宗银,罗冰,张静蕾,刘吉伟. 2014. 四川磨溪—高石梯地区龙王庙组滩控岩溶型储集层特征及控制因素. 石油勘探与开发, 41(6): 650-660. [Jin M D,Zeng W,Tan X C,Li L,Li Z Y,Luo B,Zhang J L,Liu J W.2014. Characteristics and controlling factors of beach-controlled karst reservoirs in Cambrian Longwangmiao Formation,Moxi-Gaoshiti area,Sichuan Basin,NW China. Petroleum Exploration and Development, 41(6): 650-660] [7] 李皎,何登发. 2014. 四川盆地及邻区寒武纪古地理与构造-沉积环境演化. 古地理学报, 16(4): 441-460. [Li J,He D F.2014. Palaeogeography and tectonic-depositional environment evolution of the Cambrian in Sichuan Basin and adjacent areas. Journal of Palaeogeography(Chinese Edition), 16(4): 441-460] [8] 李天生. 1992. 四川盆地寒武系沉积成岩特征与油气储集性. 矿物岩石, 12(3): 66-73. [Li T S.1992. The characteristics of sedimentary rock and reservoir of oil and gas of Cambrian System in Sichuan Basin. Mineralogy and Petrology, 12(3): 66-73] [9] 李亚林,巫芙蓉,刘定锦,彭勇,陈胜,邓小江,李小娟,龚富华,陈华,甘霞明. 2014. 乐山—龙女寺古隆起龙王庙组储层分布规律及勘探前景. 天然气工业, 34(3): 61-66. [Li Y L,Wu F R,Liu D J,Peng Y,Chen S,Deng X J,Li X J,Gong F H,Chen H,Gan X M.2014. Distribution rule and exploration prospect of LongWangMiao Fm reservoirs in the Leshan-Longnusi paleolift,Sichuan Basin. Natural Gas Industry, 34(3): 61-66] [10] 刘树根,孙讳,李智武,邓宾,刘顺. 2008. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏. 天然气地球科学, 19(3): 293-300. [Liu S G,Sun W,Li Z W,Deng B,Liu S.2008. Tectonic uplifting and gas pool formation since Late Cretaceous Epoch,Sichuan Basin. Natural Gas Geosciences, 19(3): 293-300] [11] 马力,陈焕疆,甘克文,徐克定,许效松,吴根耀,葉舟,梁兴,吴少华,邱蕴玉,章平澜,葛芃芃. 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社,426-448. [Ma L,Chen H J,Gan K W,Xu K D,Xu X S,Wu G Y,Ye Z,liang X,Wu S H,Qiu Y Y,Zhang P L,Ge P P. 2004. Tectonic of Southern China and Marine Oil and Gas Geology. Beijing: Geological Publishing House,426-448] [12] 钱一雄,邹远荣,陈强路,陈跃. 2005. 塔里木盆地塔中西北部多期、多成因岩溶作用地质—地球化学表征: 以中1井为例. 沉积学报, 23(4): 596-603. [Qian Y X,Zhou Y R,Chen Q L,Chen Y.2005. Geological and geochemical implications for multi-period and origin of carbonate karstification in the northwestern Tazhong: Taking well Zhong-1 as an exemple,northwestern Tazhong,Xinjiang. Acta Sedimentologica Sinica, 23(4): 596-603] [13] 钱一雄,陈强路,陈跃,罗月明. 2009. 碳酸盐岩中缝洞方解石成岩环境的矿物地球化学判识: 以塔河油田的沙79井和沙85井为例. 沉积学报, 27(6): 1027-1032. [Qian Y X,Chen Q L,Chen Y,Luo Y M.2009. Mineralogical and geochemical identification for diagenetic settings of paleo-caves and fractures-filling & vugs calcites in carbonate: Taking wells S79 and S85 for example. Acta Sedimentologica Sinica, 27(6): 1027-1032] [14] 王丹,陈代钊,杨长春,Qing Hairuo,王旭,吴茂炳,邢秀娟. 2010. 埋藏环境白云石结构类型. 沉积学报, 28(1): 17-25. [Wang D,Chen D Z,Yang C C,Qing H R,Wang X,Wu M B,Xing X J.2010. Classification of texture in burial dolomite. Acta Sedimentologica Sinica, 28(1): 17-25] [15] 王剑. 1990. 缓坡及其构造背景: 以中国南方早寒武世龙王庙期扬子碳酸盐缓坡为例. 岩相古地理,(5): 13-22. [Wang J.1990. Carbonate ramps and their tectonic controls,with an example from the longwangmiaoian(Early Cambrian)YangZi carbonate ramp in South China. Sedimentary Facies and Palaeogeography,(5): 13-22] [16] 王素芬,李伟,张帆,王兴志. 2008. 乐山—龙女寺古隆起洗象池群有利储集层发育机制. 石油勘探与开发, 35(2): 170-l74. [Wang S F,Li W,Zhang F,Wang X Z.2008. Developmental mechanism of advantageous Xixiangchi Group reservoirs in Leshan-Longnvsi Palaeohigh. Petroleum Exploration and Development, 35(2): 170-174] [17] 张帆,文应初,强子同. 1999. 四川盆地寒武系洗象池群碳酸盐岩向上变浅沉积序列. 矿物岩石地球化学通报, 18(1): 23-28. [Zhang F,Wen Y C,Qiang Z T.1999. Upward shallowing sequences of Cambrian carbonate rocks in the Xixiangchi Group in the Sichuan Basin. Bulletin of Mineralogy,Petrology and Geochemistry, 18(1): 23-28] [18] 周进高,姚根顺,杨光,张建勇,郝毅,王芳,谷明峰,李文正. 2015. 四川盆地安岳大气田震旦系—寒武系储层的发育机制. 天然气工业, 35(1): 36-44. [Zhou J G,Yao G S,Yang G,Zhang J Y,Hao Y,Wang F,Gu M F,Li W Z.2015. Genesis mechanism of the Sinian-Cambrian reservoirs in the AnYue gas field,Sichuan Basin. Nature Gas Industry, 35(1): 36-44] [19] Anderson T F,Arthur M A.1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems. In: Arthur M A,Anderson T F,Kaplan I R,Veizer J,Land L S(eds). Stable Isotopes in Sedimentary Geology,10. Tulsa,Okla: Society of Economic Paleontologists and Mineralogists,1-151. [20] Denison R E,Koepnick R B,Fletcher A,Howell M W,Callaway W S.1994. Criteria for the retention of original seawater87Sr/86Sr in ancient shelf limestones. Chemical Geology, 112(1-2): 131-143. [21] Goldstein R H,Reynolds T J.1994. Systematics of fluid inclusions in diagenetic minerals. SEPM Short Course,31: 199. [22] Ingram B L,Sloan P.1992. Strontium isotopic composition of estuarine sediments as paleosalinity: Paleoclimate indicator. Science, 255: 68-72. [23] Loucks R G.1999. Paleocave carbonate reservoirs: Origins,burial-depth modifications,spatial complexity,and reservoir implications. AAPG Bulletin, 83(11): 1795-1834. [24] McCrea J M.1950. On the isotope chemistry of carbonates and paleo-temperature scale. Journal of Chemical Physics, 18(6): 849-857. [25] Moore C H.2001. Carbonate Reservoirs Porosity Evolution and Diagenesis in a Sequence Stratigraphie Framework.Amsterdam: Elsevier Science,1-234. [26] Purdy E G,Waltham D.1999. Reservoir implications of modern karst topography. AAPG Bulletin, 83(11): 1774-1794. [27] Sam Boggs J R,Krinsley D. 2006. Application of cathodoluminescence imaging to the study of sedmimentar rocks. London: Cambridge Universtiy Press,109-134. [28] Sean A G,Mark G,Daniel G C,Andrew M,Gombos J R,Steven L B,David A V.2007. Karst and early fracture networks in carbonates,turks and Caicos island,British West Indies. Journal of Sedimentary Research, 77(6): 508-524. [29] Sibley D F, Gregg J M.1987. Classification of dolomite rocks textures. Journal of Sedimentary Petrology, 57: 967-975. [30] Veizer J,Ala D,Azmy K,Bruckschen P,Bruh D,Buhla F,Carden G A F,Diener A,Ebneth S,Godderis Y,Jasper T,Korte C,Pawellek F,Podlaha O G,Strauss H.1999. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161(1): 59-88.