Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province
Zhang Ya-Guan1, Du Yuan-Sheng1, Chen Guo-Yong2, Liu Jian-Zhong2, Chen Qing-Gang3, Zhao Zheng4, Wang Ze-Peng3, Deng Chao5
1 School of Earth Scinces,China University of Geosciences(Wuhan),Wuhan 430074,China; 2 Bureau of Geology and Mineral Exploration and Development of Guizhou Province,Guiyang 550004,China; 3 Geological Brigade 105,Brueau of Geology and Mineral Exploration Development of Guizhou Province,Guiyang 550018,China; 4 Geological Brigade 104,Brueau of Geology and Mineral Exploration Development of Guizhou Province,Duyun 558000,China; 5 Geological Brigade 115,Brueau of Geology and Mineral Exploration Development of Guizhou Province,Qingzhen 551400,China
Abstract The Kaiyang and Weng'an phosphate-rich depositional district that developed in central Guizhou Province during the depositional period of Sinian Doushantuo Formation has high ore yield and P2 O5 grade and is the phosphorite one of the most important phosphate resources region in the world. The phosphorites deposits of central Guizhou Province developed along the shallow-water margin of Qianzhong Oldland. These phosphatic beds are predominantly composed of reworked clastic phosphorites interbedded by pristine phosphatic marls,biogenetic phosphorite and diagenetic unconsolidated phosphorite. The dynamic sedimentary and mineralization process of the Kaiyang-type high-grade phosphorite could be called three stages mineralization process. The first stage is the pristine phosphogenesis: Upwelling of the bottom waters might have brought P-enriched waters to the shallow photic zone,stimulating the supersaturation of phosphate in seawater through the bio-chemical dynamism and then the precipitation of francolite. The second stage is the winnowing and reworked process: The syndepositional wave- and storm-induced erosion,winnowing and reworking continuously restructured pristine phosphatic facies and removed the lighter terrigenous grains,forming assemblages of economic granular phosphorites. The last stage is the exposing and leaching process: The exposure event caused by the sea-level fall led to weathering and leaching of phosphatic successions,the slightly acidic meteoric water dissolved carbonate minerals and created carbonate-rich solutions which travelled through subsurface drainage,resulting in secondary enrichment of phosphate. The three stages mineralization process regulated by the palaeogeography and frequent sea-level changes dynamically and repeatedly worked on the phosphate deposits,finally forming the high-grade and economically significant phosphate ores.
Fund:Co-funded by the Bureau of Geology and Mineral Exploration and Development of Guizhou Province(No.[2013]56)and the National Natural Science Foundation of China-The People's Government of Guizhou Province Karst Scientific Research Center
Corresponding Authors:
Du Yuan-Sheng,born in 1958,is a professor and Ph.D. supervisor of China University of Geosciences(Wuhan). He is mainly engaged in the research on sedimentary geology. E-mail: duyuansheng126@126.com.
About author: Zhang Ya-Guan,born in 1990,is a Ph.D. candidate of China University of Geosciences(Wuhan), and his major is sedimentary geology. E-mail: zyg1000800@sina.cn.
Cite this article:
Zhang Ya-Guan,Du Yuan-Sheng,Chen Guo-Yong et al. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province[J]. JOPC, 2019, 21(2): 351-368.
Zhang Ya-Guan,Du Yuan-Sheng,Chen Guo-Yong et al. Three stages dynamic mineralization model of the phosphate-rich deposits: Mineralization mechanism of the Kaiyang-type high-grade phosphorite in central Guizhou Province[J]. JOPC, 2019, 21(2): 351-368.
[1] 陈国勇,杜远生,张亚冠,陈庆刚,范玉梅,王泽鹏,谭华. 2015. 黔中地区震旦纪含磷岩系时空变化及沉积模式. 地质科技情报, 34(6): 17-25. [Chen G Y,Du Y S,Zhang Y G,Chen Q G,Fan Y M,Wang Z P,Tan H.2015. Spatial and temporal variation and mineralization model of the Sinian phosphorus-bearing sequences in central Guizhou Province. Geological Science and Technology Information, 34(6): 17-25] [2] 陈其英. 1981. 磷块岩的内碎屑. 地质科学,(2): 153-158. [Chen Q Y.1981. Study on the intraclast of phosphorite. Scientia Geologica Sinica,(2): 153-158] [3] 陈其英,郭师曾. 1985. 中国东部震旦纪和寒武纪磷块岩的结构成因类型及其沉积相和环境. 地质科学,(3): 224-235. [Chen Q Y,Guo S Z.1985. Texture-genetic types,facies,characteristics and formation environment of phosphorites of Sinian and Cambrian in eastern China. Scientia Geologica Sinica,(3): 224-235] [4] 邓克勇,吴波,罗明学,罗春,龙建喜. 2015. 贵州开阳双山坪陡山沱组磷块岩地球化学特征及成因意义. 地质与勘探, 51(1): 123-132. [Deng K Y,Wu B,Luo M X,Luo C,Long J X.2015. Phosphate rock geochemistry of the Doushantuo Formation in Shuangshanping,Kaiyang of Guizhou Province and its Genetic Significance. Geology and Exploration, 51(1): 123-132] [5] 郭庆军,杨卫东,刘丛强,Harald Strauss,王兴理,赵元龙. 2003. 贵州瓮安生物群和磷矿形成的沉积地球化学研究. 矿物岩石地球化学通报, 22(3): 202-208. [Guo Q J,Yang W D,Liu C Q,Harald S,Wang X L,Zhao Y L.2003. Sedimentary Geochemistry Research on the Radiation of Weng'an Biota and the Formation of the Phosphorite Ore Deposit,Guizhou. Bulletin of Mineralogy,Petrology and Geochemistry, 22(3): 202-208] [6] 黄毅,田升平. 1995. 云南滇池地区风化磷块岩的风化指标研究. 矿物学报, 15(1): 15-20. [Huang Y,Tian S P.1995. A study on the weathering index of weathered phosphorite in the Dianchi area of Yunnan Province. Acta Mineralogica Sinica, 15(1): 15-20] [7] 李铁生,文素秋,田平,唐泽军,黄毅. 1996. 中国南方风化磷块岩研究. 化工矿产地质, 8(3): 53-57. [Li T S,Wen S Q,Tian P,Tang Z J,Huang Y.1996. Weathered phosphorites in South China. Geology of Chemical Minerals, 8(3): 53-57] [8] 刘静江,李伟,张宝民,周慧,袁晓红,单秀琴,张静,邓胜徽,谷志东,樊茹,王拥军,李鑫. 2015. 上扬子地区震旦纪沉积古地理. 古地理学报, 17(6): 735-753. [Liu J J,Li W,Zhang B M,Zhou H,Yuan X H,Shan X Q,Zhang J,Deng S H,Gu Z D,Fan R,Wang Y J,Li X.2015. Sedimentary palaeogeography of the Sinian in Upper Yangtze Region. Journal of Palaeogeography(Chinese Edition), 17(6): 735-753] [9] 刘魁梧. 1985. 沉积磷块岩结构类型、成因及成矿阶段. 沉积学报, 3(1): 29-41. [Liu K W.1985. The textures types,geneses and ore-forming stages of sedimentary phosphorite. Acta Sedimentolgica Sinica, 3(1): 29-41] [10] 刘魁梧,陈其英. 1994. 磷块岩的胶结作用. 地质科学, 29(1): 62-70. [Liu K W,Chen Q Y.1994. Cementation processes of phosphorites. Scientia Geologica Sinica, 29(1): 62-70] [11] 密文天,范昱. 2012. 贵州瓮安磷矿岩石学及沉积序列研究. 中国矿业, 21(2): 51-54. [Mi W T,Fan Y.2012. Research on petrology and sedimentary sequences of phosphorites in Weng'an,Guizhou. China Mining Magazine, 21(2): 51-54] [12] 密文天,林丽,马叶情,王新利,任才云,周玉华. 2010. 贵州瓮安陡山沱组含磷岩系沉积序列及磷块岩的形成. 沉积与特提斯地质, 30(3): 46-52. [Mi W T,Lin L,Ma Y Q,Wang X L,Ren C Y,Zhou Y H.2010. Depositional sequences of the phosphatic rock series and formation of the phosphorites in the Doushantuo formation in Wengan,Guizhou. Sedimentary Geology and Tethyan Geology, 30(3): 46-52] [13] 聂文明,马东升,潘家永,周健,吴凯. 2006. 黔中新元古代—早寒武世含磷岩系δ13C变化及其古海洋意义. 南京大学学报(自然科学版), 42(3): 257-268. [Nie W M,Ma D S,Pan J Y,Zhou J,Wu K.2006. δ13C Excursions of phosphorite-bearing rocks in Neoproterozoic-Early Cambrian Interval in Guizhou,South China: Implications for palaeoceanic evolutions. Journal of Nanjing University(Natural sciences), 42(3): 257-268] [14] 汪正江,王剑,卓皆文,杨平,刘家洪,谢尚克. 2011. 扬子陆块震旦纪—寒武纪之交的地作用壳伸展作用: 来自沉积序列与沉积地球化学证据. 地质论评, 57(5): 731-742. [Wang Z J,Wang J,Zhuo J W,Yang P,Liu J H,Xie S K.2011. Crust extensional activity during the transition from Sinian(Ediacaran)to Cambrian in Yangtze Block: Evidences from the depositional sequence and its geochemical data. Geological Review, 57(5): 731-742] [15] 王剑,段太忠,谢渊,汪正江,郝明,刘伟. 2012. 扬子地块东南缘大地构造演化及其油气地质意义. 地质通报, 31(11): 1739-1749. [Wang J,Duan T Z,Xie Y,Wang Z J,Hao M,Liu W.2012. The tectonic evolution and its oil and gas prospect of southeast margin of Yangtze Block. Geological Bulletin of China, 31(11): 1739-1749] [16] 王泽鹏,张亚冠,杜远生,陈国勇,刘建中,徐园园,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳磷矿沉积区震旦纪陡山沱期定量岩相古地理重建. 古地理学报,(3): 399-410. [Wang Z P,Zhang Y G,Du Y S,Chen G Y,Liu J Z,Xu Y Y,Tan D W,Li Lei,Wang D F,Wu W M.2016. Reconstruction of quantitative lithofacies palaeogeography of the Sinian Duoshantuo Age of phosphorite depositional zone in Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition),(3): 399-410] [17] 吴祥和,韩至钧,蔡继峰,肖永连. 1999. 贵州磷块岩. 北京: 地质出版社, 30-43,49-66. [Wu X H,Han Z J,Cai J F,Xiao Y L.1999. Phosphorites in Guizhou. Beijing: Geological Publishing House,30-43,49-66]. [18] 吴文明,杨瑞东,徐世林,任海利,刘建中,王泽鹏,王大福,谭代卫,李磊. 2017. 贵州开阳陡山沱组超大型磷矿的富磷因素分析. 化工矿物与加工,(7): 33-37. [Wu W M,Yang R D,Xu S L,Reng H L,Liu J Z,Wang Z P,Wang D F,Tan D W,Li L.2017. Analysis of enrichment factors for super-large phosphate deposit in Doushantuo Formation in Kaiyang,Guizhou. Industrial Minerals and Processing,(7): 33-37.] [19] 肖朝益,张正伟,何承真,温汉捷,樊海峰. 2018. 华南埃迪卡拉纪磷矿的沉积环境. 矿物岩石地球化学通报, 37(1): 121-138. [Xiao C Y,Zhang Z W,He C Z,Wen H J,Fan H F.2018. The depositional environment of Ediacaran phosphorite deposits,South China. Bulletin of Mineralogy,Petrology and Geochemistry, 37(1): 121-138] [20] 杨爱华,朱茂炎,张俊明,赵方臣,吕苗. 2015. 扬子板块埃迪卡拉系(震旦系)陡山沱组层序地层划分与对比. 古地理学报, 17(1): 1-20. [Yang A H,Zhu M Y,Zhang J M,Zhao F C,Lü M.2015. Sequence stratigraphic subdivision and correlation of the Ediacaran(Sinian)Doushantuo Formation of Yangtze Plate,South China. Journal of Palaeogeography(Chinese Edition), 17(1): 1-20] [21] 叶连俊,陈其英,赵东旭,陈志明,陈友明,刘魁梧. 1989. 中国磷块岩. 北京: 科学出版社,89-102,223-237. [Ye L J,Chen Q Y,Zhao D X,Chen Z M,Chen Y M,Liu K W.1989. China Phosphate Rock. Beijing: Science Press,89-102,223-237] [22] 张亚冠,杜远生,徐亚军,余文超,黄虎,焦良轩. 2015. 湘中震旦纪—寒武纪之交硅质岩地球化学特征及成因环境研究. 地质论评, 61(3): 499-510. [Zhang Y G,Du Y S,Xu Y J,Yu W C,Huang H,Jiao L X.2015. Geochemical characteristics of siliceous rocks during the transition from Sinian(Ediacaran)to Cambrian in central Hunan and it implication for genesis and sedimentary environment. Geological Review, 61(3): 499-510] [23] 张亚冠,杜远生,陈国勇,刘建中,王泽鹏,徐圆圆,谭代卫,李磊,王大福,吴文明. 2016. 黔中开阳地区震旦纪陡山沱期富磷矿沉积特征与成矿模式. 古地理学报, 18(4): 581-594. [Zhang Y G,Du Y S,Chen G Y,Liu J Z,Wang Z P,Xu Y Y,Tan D W,Li L,Wang D F,Wu W M.2016. Sedimentary characteristics and mineralization model of high-grade phosphorite in the Sinian Doushantuo Age of Kaiyang area,central Guizhou Province. Journal of Palaeogeography(Chinese Edition), 18(4): 581-594] [24] 赵东旭. 1986. 震旦纪陡山沱组的碎屑磷块岩. 岩石学报, 2(3): 66-75. [Zhao D X.1986. Intraclzstic phosphorites of Doushantuo formation in Sinian period. Acta Petaologica Sinica, 2(3): 66-75] [25] Abed A M,Arouri K R,Boreham C J.2005. Source rock potential of the phosphorite-bituminous chalk-marl sequence in Jordan. Marine and Petroleum Geology, 22(3): 413-425. [26] Arning E T,Lückge A,Breuer C,Gussone N,Birgel D,Peckmann J.2009. Genesis of phosphorite crusts off Peru. Marine Geology, 262(1-4): 68-81. [27] Baioumy H,Tada R.2005. Origin of Late Cretaceous phosphorites in Egypt. Cretaceous Research, 26(2): 261-275. [28] Baturin G N.1971. Stages of phosphorite formation on the ocean floor. Nature, 232(29): 61-62. [29] Compton J,Mallinson D,Glenn C R,Fillippelli G,Föllmi K,Shields G,Zanin Y.2000. Variations in the global phosphorus cycle. Society for Sedimentary Geology: 21-33. [30] Cook P J.1992. Phosphogenesis around the Proterozoic-Phanerozoic transition. Journal of the Geological Society, 149(4): 615-620. [31] Cook P J,Shergold J H.1984. Phosphorus,phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature,(308): 231-236. [32] Delaney M L.1998. Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochemical Cycles, 12(4): 563-672. [33] Drummond J B R,Pufahl P K,Porto C G,Carvalho M.2015. Neoproterozoic peritidal phosphorite from the Sete Lagoas Formation(Brazil)and the Precambrian phosphorus cycle. Sedimentology, 62(7): 1978-2008. [34] El-Kammar A M,Basta E Z.1983. Chemical weathering of the economic phosphates of Abu Tartur,Western Desert,Egypt. Chemical Geology, 38(3-4): 321-328. [35] Filippelli G M.2008. The Global Phosphorus Cycle: Past,Present,and Future. Elements, 4(2): 89-95. [36] Filippelli G M.2011. Phosphate rock formation and marine phosphorus geochemistry: The deep time perspective. Chemosphere, 84(6): 759-766. [37] Föllmi K B.1996. The phosphorus cycle,phosphogenesis and marine phosphate-rich deposits. Earth Science Reviews, 40(1): 55-124. [38] Gao Y,Zhang X,Zhang G,Chen K,Shen Y.2018. Ediacaran negative C-isotopic excursions associated with phosphogenic events: Evidence from South China. Precambrian Research, 307: 218-228. [39] Garrison R E,Kastner M.1990. Phosphatic sediments and rocks recovered from the Peru margin during ODP Leg 112. In: Suess E,von Heune R, et al.(eds). Proceedings of the Ocean Drilling Program,Scientific Results: College Station,Ocean Drilling Program,111-134. [40] Glenn C R,Föllmi K B,Riggs S R,Baturin G N,Grimm K A,Trappe J,Abed A M,Galli-Oliver C,Garrison R E,Ilyan A V,Jehl C,Rohrlich V,Sadaqah R M Y,Schidlowski M,Sheldon R E,Siegmund H.1994. Phosphorus and phosphorites: Sedimentology and environments of formation. Eclogae Geologicae Helvetiae, 87(3): 747-788. [41] Jiang G Q,Shi X Y,Zhang S H,Wang Y,Xiao S H.2011. Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation(ca. 635-551Ma)in South China. Gondwana Research, 19(4): 831-849. [42] Krajewski K P,Le Niak P M,Cka B,Zawidzki P.2000. Origin of phosphatic stromatolites in the Upper Cretaceous condensed sequence of the Polish Jura Chain. Sdimentary Geology, 136(1): 89-112. [43] Lucas J,Flicoteaux R,Nathan Y,Prévôt L,Shahar Y.1980. Different aspects of phosphorite weathering. SEPM Special Publication, 29: 41-51. [44] Nelson G J,Pufahl P K,Hiatt E E.2010. Paleoceanographic constraints on Precambrian phosphorite accumulation,Baraga Group,Michigan,USA. Sedimentary Geology, 226(1-4): 9-21. [45] Papineau D.2010. Global biogeochemical changes at both ends of the Proterozoic: Insights from phosphorites. Astrobiology, 10(2): 165-181. [46] Planavsky N J,Rouxel O J,Bekker A,Lalonde S V,Konhauser K O,Reinhard C T,Lyons T W.2010. The evolution of the marine phosphate reservoir. Nature, 467(7319): 1088-1090. [47] Pufahl K P,Groat A L.2016. Sedimentary and igneous phosphate deposits: Formation and exploration: An invited paper. Economic Geology, 112(3): 483-516. [48] Pufahl P K,Hiatt E E.2012. Oxygenation of the Earth's atmosphere-ocean system: A review of physical and chemical sedimentologic responses. Marine and Petroleum Geology, 32(1): 1-20. [49] Sánchez-Navas A,Martín-Algarra A.2001. Genesis of apatite in phosphate stromatolites. European Journal of Mineralogy, 13(2): 361-376. [50] She Z B,Strother P,McMahon G,Nittler L R,Wang J H,Zhang J H,Sang L K,Ma C Q,Papineau D.2013. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅰ: In situ micro-analysis of textures and composition. Precambrian Research, 235: 20-35. [51] She Z B,Strother P,Papineau D.2014. Terminal Proterozoic cyanobacterial blooms and phosphogenesis documented by the Doushantuo granular phosphorites Ⅱ: Microbial diversity and C isotopes. Precambrian Research, 251: 62-79. [52] Soudry D.1992. Primary bedded phosphorites in the Campanian Mishash Formation,Negev,southern Israel. Sedimentary Geology, 80(1-2): 77-88. [53] Trappe J.2001. A nomenclature system for granular phosphate rocks according to depositional texture. Sedimentary Geology, 145: 135-150. [54] Vernhet E.2007. Paleobathymetric influence on the development of the late Ediacaran Yangtze platform(Hubei,Hunan,and Guizhou Provinces,China). Sedimentary Geology, 197(1-2): 29-46. [55] Vernhet E,Reijmer J J G.2010. Sedimentary evolution of the Ediacaran Yangtze platform shelf(Hubei and Hunan Provinces,Central China). Sedimentary Geology, 225(3-4): 99-115. [56] Vernhet E,Heubeck C,Zhu M Y,Zhang J M.2006. Large-scale slope instability at the southern margin of the Ediacaran Yangtze platform(Hunan Province,central China). Precambrian Research, 148(1-2): 32-44. [57] Zhu M Y,Zhang J M,Yang A H.2007. Integrated Ediacaran(Sinian)chronostratigraphy of South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 254(1-2): 7-61. [58] Zhu M Y,Lu M,Zhang J M,Zhao F C,Li G X,Yang A H,Zhao X,Zhao M J.2013. Carbon isotope chemostratigraphy and sedimentary facies evolution of the Ediacaran Doushantuo Formation in western Hubei,South China. Precambrian Research, 225: 7-28.