Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis
Liu Ze1,2, Li San-Zhong1,2, S. Wajid. Hanif. Bukhari1,2, Dai Li-Ming1,2, Suo Yan-Hui1,2
1 Key Lab of Submarine Geosciences and Prospecting Techniques,MOE and College of Marine Geosciences, Ocean University of China,Qingdao 266100,China; 2 Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266235,China
Abstract In recent years, it has been found that the palaeogeographic features will be accelerated when a strong tectonic activity exists. However,it is difficult to reconstruct the palaeogeography and palaeogeomorphy related to this tectonic activity by applying the traditional methods. Based on many previous research work,the Basin and Landscape Dynamics(Badlands)software,a parallel algorithm,is thus developed to simulate the spatial and temporal evolution of palaeogeomorphy. It can be used to study the evolution of surface processes,to predict erosion and sedimentation rates,and to evaluate sediment fluxes. Therefore,this software is powerful in conducting more detailed research on the reconstruction of palaeogeography and palaeogeomorphy. In this paper,the basic principles and methods of Badlands are introduced. This software is used in the reconstruction of Mesozoic geomorphology and geological evolution in the southern East China Sea Continental Shelf. First of all,the Early Mesozoic palaeotopography is built by using the pre-existing seismic profiles,well logging data,and cross-section balanced profiles in the study area. Parameters, including rainfall,rock erosion,sea level change,dynamic topography and crustal elastic layer thickness, are input in the numerical model to analyze the influence of strong tectonic movement on the evolution of basin and geomorphology in the study area. The simulation results show a good consistency with the known Mesozoic geomorphological and sedimentary features. We further analyze the distribution of sedimentary during the evolution of basin and the three-dimensional Mesozoic palaeogeography and geomorphological evolution. This method can also provide a new way to analyze the basin fill processes and the exploration of energy resource and mineral.
Fund:; Co-funded by National Natural Science Foundation of China(Nos. 91958214, U1606401),National Key Research and Development Program of China(No.2017YFC0601401,2016YFC0601002),Qingdao National Laboratory for Marine Science and Technology(Nos. 2016ASKJ13,2017ASKJ02),National Programme on Global Change and Air-Sea Interaction,SOA(No. GASI-GEOGE-01),Aoshan Talents Program Supported by Qingdao National Laboratory for Marine Science and Technology to Prof. Sanzhong Li(No.2015ASTP-0S10)and the Taishan Scholar Program to Prof. Sanzhong Li
Corresponding Authors:
Li San-Zhong,born in 1968,is a professor and Ph.D. supervisor of the College of Marine Geosciences,Ocean University of China. He is mainly engaged in the research of structural geology and marine geology. E-mail: sanzhong@ouc.edu.cn.
About author: Liu Ze, born in 1992,is a Ph.D. candidate of the College of Marine Geosciences,Ocean University of China. He is mainly engaged in the research of numerical simulation of structural geology. E-mail: liuzegeo@126.com.
Cite this article:
Liu Ze,Li San-Zhong,S. Wajid. Hanif. Bukhari et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. JOPC, 2020, 22(1): 29-38.
Liu Ze,Li San-Zhong,S. Wajid. Hanif. Bukhari et al. Reconstruction of dynamic palaeogeomorphy: Application of Badlands software in basin analysis[J]. JOPC, 2020, 22(1): 29-38.
[1] 陈云华. 2008. 中国东南地区晚白垩世沉积响应与古气候. 成都:成都理工大学硕士学位论文. [Chen Y H.2008. Late Cretaeeous sedimentary responses to the “Coast Range” and paleoclimate changes in the southeast China. Chengdu: Master Dissertation of Chengdu University of Technology] [2] 高艺,姜在兴,李俊杰,刘圣乾,吴明昊,王夏斌. 2015. 古地貌恢复及其对滩坝沉积的控制作用: 以辽河西部凹陷曙北地区沙四段为例. 油气地质与采收率, 22(5): 40-46. [Gao Y,Jiang Z X,Li J J,Liu S Q,Wu M H,Wang X B.2015. Restoration of paleogeomorphology and its controlling effect on deposition of beach bar sand bodies: A case study of the fourth Member of Shahejie Formation,Shubei area,Liaohe Western sag. Petroleum Geology and Recovery Efficiency, 22(5): 40-46] [3] 江东辉,唐建,王丹萍,徐立明,李刚,杨长清. 2017. 东海陆架盆地南部及邻近陆域中生代地层格架对比. 海洋地质前沿, 33(4): 16-21. [Jiang D H,Tang J,Wang D P,Xu L M,Li G,Yang C Q.2017. Mesozoic stratigraphic framework of the southern East China Sea Shelf Basin and its correlation with adjacent areas. Marine Geology Frontier, 33(4): 16-21] [4] 蒋玉波,龚建明,曹志敏,李刚,杨长清,杨传胜. 2013. 东海陆架盆地南部及邻区陆域中生界对比. 海洋地质前沿, 29(10): 1-7. [Jiang Y B,Gong J M,Cao Z M,Li G,Yang C Q,Yang C S.2013. Correlation of the Mesozoic between southern East China Sea Shelf Basin and its adjacent areas,Frontiers of Marine Geology, 29(10): 1-7] [5] 康波,解习农,杜学斌,宋国奇,田姗姗,简晓玲. 2012. 基于滨线轨迹的古水深定量计算新方法: 以古近系沙三中段东营三角洲为例. 沉积学报, 30(3): 443-450. [Kang B,Xie X N,Du X B,Song G Q,Tian S S,Jian X L.2012. A new paleobathymetric approach based on shoreline trajectory: An example from Dongying delta in the third Member of Paleogene Shahejie Formation. Acta Sedimentologica Sinica, 30(3): 443-450] [6] 康志宏,吴铭东. 2003. 利用层序地层学恢复岩溶古地貌技术: 以塔河油田6区为例. 新疆地质, 21(3): 10-15. [Kang Z H,Wu M D.2003. Technology of recovering ancient geomorphy though sequence stratigraphy: A case study in Tahe 6th reservoir,Tarim Basin. Xinjiang Geology, 21(3): 10-15] [7] 李家强. 2008. 层拉平方法在沉积前古地貌恢复中的应用: 以济阳坳陷东营三角洲发育区为例. 油气地球物理, 6(2): 46-49. [Li J Q.2008. Application of bedding flattening in the process of rebuilding paleogeomorpholog before basin deposition: A case study in Dongying sag,Jiyang depression. Petroleum Geophysics, 6(2): 46-49] [8] 李三忠,余珊,赵淑娟,刘鑫,龚淑云,索艳慧,戴黎明,马云,许立青,曹现志,王鹏程,孙文军,杨朝,朱俊江. 2013. 东亚大陆边缘的板块重建与构造转换. 海洋地质与第四纪地质, 33(3): 65-94. [Li S Z,Yu S,Zhao S J,Liu X,Gong S Y,Suo Y H,Dai L M,Ma Y,Xu L Q,Cao X Z,Wang P C,Sun W J,Yang Z,Zhu J J.2013. Tectonic Transition and Plate Reconstructions of the East Asian Continental Magin. Marine Geology & Quaternary Geology, 33(3): 65-94] [9] 李忠海,Di L J,Neil R.2014. 大洋俯冲带的地幔变形和地震波各向异性的数值模拟. 见:2014年中国地球科学联合学术年会论文集. 北京: 中国地球物理学会,中国地质学会. [Li Z,Di L J,Neil R.2014. Numerical simulation of mantle deformation and seismic wave anisotropy in ocean subduction zone. Beijing: Chinese Geophysical Society,Geological Society of China] [10] 刘军锷,简晓玲,康波,苏明,杜学斌. 2014. 东营凹陷东营三角洲沙三段中亚段古地貌特征及其对沉积的控制. 油气地质与采收率, 21(1): 20-23. [Liu J E,Jian X L,Kang B,Su M,Du X B.2014. Paleogeomorphology of the middle part of 3rd Member of Shahejie Formation and their effects on depositional systems,Dongying delta,Dongying depression. Petroleum Geology and Recovery Efficiency, 21(1): 20-23] [11] 刘瑞东,王宝清,王博,狄翔,郭斌,刘伟. 2014. 鄂尔多斯盆地环江地区前侏罗纪古地貌恢复研究. 石油地质与工程, 28(5): 9-11. [Liu R D,Wang B Q,Wang B,Di X,Guo B,Liu W.2014. Study on pre-Jurassic palaeogeomorphology reconstruction of Huanjiang region,Ordos Basin. Petroleum Geology and Engineering, 28(5): 9-11] [12] 刘泽. 2018. 深部动力过程对地球表层系统的影响:以东海陆架盆地南部中生代盆地演化为例. 青岛: 中国海洋大学. [Liu Z2018. Response of deep dynamic process to the earth surface system-a case study of the Mesozoic basin evolution in the south of the East China Sea Shelf Basin. Qingdao: Ocean University of China] [13] 毛建仁. 1994. 中国东南大陆中、新生代岩浆作用与壳幔演化动力学. 火山地质与矿产, 15(2): 1-11. [Mao J.1994. The Mesozoic-Cenozoic magmatism and Geodynamics of crustal and mantle evolution in southeast China continent. Volcanology & Mineral Resources, 15(2): 1-11] [14] 石广仁,郭秋麟,米石云,张庆春,杨秋琳. 1996. 盆地综合模拟系统BASIMS. 石油学报, 17(1): 1-9. [Shi G R,Guo Q L,Mi S Y,Zhang Q C,Yang Q L.1996. Basin integrated modeling system “BASIMS”. Acta Petrolei Sinica, 17(1): 1-9] [15] 杨传胜,李刚,杨长清,龚建明,廖晶. 2012. 东海陆架盆地及其邻域岩浆岩时空分布特征. 海洋地质与第四纪地质, 32(3): 125-133. [Yang C,Li G,Yang C Q,Gong J M,Liao J.2012. Temporal and spatial distribution of the igneous rocks in the East China Sea Shelf Basin and its adjacent regions. Marine Geology & Quaternary Geology, 32(3): 125-133] [16] 杨传胜. 2014. 东海陆架盆地雁荡低凸起综合地球物理解释及其成因探讨. 地球物理学报, 57(9): 2981-2992. [Yang C S.2014. Integrated geophysical interpretation of the Yandang low bulge in the continental shelf of the East China Sea and its genesis. Chinese Journal of Geophysics, 57(9): 2981-2992] [17] Adams J M,Gasparini N M,Hobley D E J,Tucker G E,Hutton E W H,Nudurupati S S,Istanbulluoglu E.2017. The landlab v1.0 over land flow component: A python tool for computing shallow water flow across watersheds,Geoscientific Model Development, 10(4): 1645-1663. [18] Attal M,Tucker G E,Whittaker A C,Cowie P A,Roberts G P.2008. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment,Journal of Geophysical Research: Earth Surface,113(F3). [19] Campforts B,Schwanghart W,Govers G.2017. Accurate simulation of transient landscape evolution by eliminating numerical diffusion: The ttlem 1.0 model,Earth Surface Dynamics, 5(1): 47-66. [20] Cowie P A,Whittaker A C,Attal M,Roberts G P,Tucker G E,Ganas A.2008. New constraints on sediment-flux dependent river incision: Implications for extracting tectonic signals from river profiles,Geology, 36: 535-538. [21] Cristallini E O, Allmendinger R W.2001. Pseudo 3-D modeling of trishear fault-propagation folding. Journal of Structural Geology, 23(12):1883-1899. [22] Gerya T V,Burg J P.2007. Intrusion of ultramafic magmatic bodies into the continental crust: Numerical simulation. Physics of the Earth and Planetary Interiors, 160(2): 124-142. [23] Hallam A.2003. Pre-Quaternary Sea-Level Changes. Annual Review of Earth & Planetary Sciences, 12(12): 205-243. [24] Haq B U,Hardenbol J,Vail P R.1987. Chronology of fluctuating sea levels since the Triassic. Science, 235(4793): 1156. [25] Haq B U, Al-Qahtani A M.2005. Phanerozoic cycles of sea-level change on the Arabian Platform. Geoarabia-Manama, 10(2): 127-160. [26] Hobley D E J,Sinclair H D,Mudd S M,Cowie P A.2011. Field calibration of sediment flux dependent river incision,Journal of Geophysical Research: Earth Surface,116(F4). [27] Hobley D E J,Adams J M,Nudurupati S S,Hutton E W H,Gasparini N M,Istanbulluoglu E,Tucker G E.2017. Creative computing with landlab: An open-source toolkit for building,coupling,and exploring two-dimensional numerical models of earth-surface dynamics,Earth Surface Dynamics, 5(1): 21-46. [28] Howard A D,Dietrich W E,Seidl M A.1994. Modeling fluvial erosion on regional to continental scales,Journal of Geophysical Research: Solid Earth,99(B7): 13971-13986. [29] Liu Z,Dai L M,Li S Z,Guo L L,Hu M Y,Ma F F,Tao J L,Yang C Q.2018. Mesozoic magmatic activity and tectonic evolution in the southern East China Sea Continental Shelf Basin: Thermo-mechanical modelling. Geological Journal, 53: 240-251. [30] Miller K G,Kominz M A,Browning J V,Wright J D,Mountain G S,Katz M E,Sugarman P J,Cramer B S,Christie-Blick N,Pekar S F.2005. The Phanerozoic record of global sea-level change,Science, 310: 1293-1298. [31] Müller R D,Flament N,Matthews K J,Williams S E,Gurnis M.2016. Formation of Australian continental margin highlands driven by plate-mantle interaction. Earth & Planetary Science Letters, 441: 60-70. [32] Néstor Cardozo, Bhalla K, Zehnder A T, Richard W A.2003. Mechanical models of fault propagation folds and comparison to the trishear kinematic model. Journal of Structural Geology, 25(1):1-18. [33] Rubey M,Brune S,Heine C,Davies D R,Williams S E,Müller R D.2017. Global patterns in Earth's dynamic topography since the Jurassic: The role of subducted slabs. Solid Earth, 8(5): 899-919. [34] Salles T,Griffiths C,Dyt C,Li F.2011. Australian shelf sediment transport responses to climate change-driven ocean perturbations,Marine Geology, 282(3-4): 268-274. [35] Salles T,Hardiman L.2016. Badlands: An open-source,flexible and parallel framework to study landscape dynamics. Computers & Geosciences, 91: 77-89. [36] Salles T,Flament N,Müller D.2017. Influence of mantle flow on the drainage of eastern australia since the jurassic period,Geochemistry,Geophysics,Geosystems, 18(1): 280-305. [37] Simpson G,Schlunegger F.2003. Topographic evolution and morphology of surfaces evolving in response to coupled fluvial and hillslope sediment transport. Journal of Geophysical Research Solid Earth,108(B6). [38] Sklar L S,Dietrich W E.1998. River longitudinal profiles and bedrock incision models: Stream power and the influence of sediment supply rivers over rock: Fluvial processes in bedrock channels. American Geophysical Union,538-541. [39] Sklar L S,Dietrich W E.2001. Sediment and rock strength controls on river incision into bedrock,Geology, 29(12): 1089-1090. [40] Smith R B,Barstad Ⅰ.2004. A linear theory of orographic precipitation,Journal of the Atmospheric Sciences, 61(12): 1377-1391. [41] Thieulot C,Steer P,Huismans R S.2014. Three-dimensional numerical simulations of crustal systems undergoing orogeny and subjected to surface processes,Geochemistry,Geophysics,Geosystems, 15(12): 4936-4957. [42] Tucker G E,Slingerland R.1997. Drainage basin responses to climate change,Water Resources Research, 33(8): 2031-2047. [43] Tucker G E,Hancock G R.2010. Modelling landscape evolution,Earth Surface Processes and Landforms, 35(1): 28-50. [44] Turowski J,Lague M D,Hovius N.2007. Cover effect in bedrock abrasion: A new derivation and its implications for the modeling of bedrock channel morphology,Journal of Geophysical Research: Earth Surface,112(F4): F04006. [45] Watts A B,Thorne J.1984. Tectonics,global changes in sea level and their relationship to stratigraphical sequences at the US Atlantic continental margin. Journal of Marine & Petroleum Geology, 1(4): 319-339. [46] Whipple K X,Tucker G E.1999. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges,landscape response timescales,and research needs. Journal of Geophysical Research Solid Earth,104(B8): 17661-17674. [47] Whipple K X,Tucker G E.2002. Implications of sediment-flux-dependent river incision models for landscape evolution. Journal of Geophysical Research: Solid Earth,107(B2): 1-20. [48] Whipple K X.2009. The influence of climate on the tectonic evolution of mountain belts,Nat. Geoscience, 2: 97-104. [49] Wickert A D.2016. Open-source modular solutions for flexural isostasy: GFlex Journal of Geoscientific Model Development, 9(3): 997-1017. [50] Willgoose G,Bras R L,Rodriguez Ⅰ.1991. A coupled channel network growth and hillslope evolution model: 1. Theory. Journal of Water Resources Research, 27(7): 1671-1684. [51] Willgoose G.2005. Mathematical Modeling of Whole Landscape Evolution. Journal of Annual Review of Earth & Planetary Sciences, 33(1): 443-459.