Abstract Deepwater channel is usually geomorphology in deepwater zone,which is not only transport way of deepwater gravity flow sediment,but also is mainly sedimentary place. There have been abundant fruits on gravity flow channel for more than 60 years. The research process and latest achievement are reviewed,characteristic and mechanism of deepwater channel have been summarized in this paper. The gravity flow channel could be divided into complex channel,vertical aggradation channel,migrational channel and small bifurcated channels. The process of complex channel is closely related to evolution of gravity flow. Channel axial deposits,debris flow/slump deposit,channel-levee system and migrational channel develop in complex channel. Sinuous migrational channel secondary circulation of gravity flow was formed. Strait migrational channel is interaction between gravity flow and contour current. The direction of work on gravity flow channel in the future always results from were proposed as follows: (1)more way and method comprehensive research; (2)systematic comparative study on mechanism and mainly controlling factors; (3)reinforce to work on the reservoir distribution.
Fund:; Co-funded by the National Key Technology Research and Development Program of China during the “13th Five-Year Plan”(No.2017ZX05032-002-003),the National Natural Science Foundation of China(Nos. 41472096,41502101),Yangtze Youth Fund of Yangtze University(No.2015cqn26), the Youth Talent Project of the Science Research Program of the Education Department of Hubei Province of China(No. Q20171308) and Open Foundation of TOP Disciplines in Yangtze University
Corresponding Authors:
He You-Bin,born in 1964,is a professor. Now he is mainly engaged in research on sedimentology. E-mail: 100709@yangtzeu.edu.cn.
About author: Li Hua,born in 1984,is an associate professor. He is mainly engaged in deepwater deposits. E-mail: 501026@yangtzeu.edu.cn.
Cite this article:
Li Hua,He You-Bin. Research progress on deepwater gravity flow channel deposit[J]. JOPC, 2020, 22(1): 161-174.
Li Hua,He You-Bin. Research progress on deepwater gravity flow channel deposit[J]. JOPC, 2020, 22(1): 161-174.
[1] 黄璐,张家年,吴昊雨,黄河清. 2013. 弯曲海底峡谷中浊流的三维流动及沉积的初步研究. 沉积学报, 31(6): 1001-1007. [Huang L,Zhang J N,Wu H Y,Huang H Q.2013. Preliminary study of three-dimensional flow and deposition of turbidity currents in sinuous submarine canyons. Acta Sedimentologica Sinica, 31(6): 1001-1007] [2] 姜在兴,赵澂林,刘孟慧. 1988. 一种沿深水箕状谷纵向搬运的重力流沉积. 石油实验地质, 10(2): 106-116. [Jiang Z X,Zhao Z L,Liu M H.1988. Replaced deposition of gravity flows along moving a deep water dustpan thalweg. Experimental Petroleum Geology, 10(2): 106-116] [3] 李华,何幼斌,王振奇. 2011. 深水高弯度水道—堤岸沉积体系形态及特征. 古地理学报, 13(2): 139-149. [Li H,He Y B,Wang Z Q.2011. Morphology and characteristics of deep water high sinuous channel-levee system. Journal of Palaeogeography(Chinese Edition), 13(2): 139-149] [4] 李华,王英民,徐强,韩自亮,徐艳霞. 2013. 深水单向迁移水道—堤岸沉积体系特征及形成过程. 现代地质, 27(3): 653-661. [Li H,Wang Y M,Xu Q,Han Z L,Xu Y X.2013. Characteristics and processes of deep water unidirectionally-migrating channel-levee system. Geoscience, 27(3): 653-661] [5] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X.2018. The type and evolution of deep-water channel deposits of the Ordovician Lashizhong Formation in western margin of the Ordos Basin. Earth Science, 43(6): 2149-2159] [6] 李文厚,周立发,符俊辉,赵文智,薛良清,靳久强. 1997. 库车坳陷上三叠统的浊流沉积及石油地质意义. 沉积学报, 15(1): 20-23. [Li W H,Zhou L F,Fu J H,Zhao W Z,Xue L Q,Jin J Q.1997. Turbidity current deposits and their significance for petroleum geology of Upper Triassic in the Kuqa Depression. Acta Sedimentologica Sinica, 15(1): 20-23] [7] 刘军,庞雄,颜承志,柳保军,李元平,胡琏,郑金云. 2011. 南海北部陆坡白云深水区浅层深水水道沉积. 石油实验地质, 33(3): 255-259. [Liu J,Pang X,Yan C Z,Liu B J,Li Y P,Hu L,Zheng J Y.2011. Shallow deepwater channels in Baiyun deepwater region of northern continental slope,South China Sea. Petroleum Geology & Experiment, 33(3): 255-259] [8] 林畅松,刘景彦,蔡世祥,张艳梅,吕明,李杰. 2001. 莺—琼盆地大型下切谷和海底重力流体系的沉积构成和发育背景. 科学通报, 46(1): 69-72. [Lin C S,Liu J Y,Cai S X,Zhang Y M,Lü M,Li J.2001. Depositional architecture and developing setting of large scale incised valley and submarine gravity flow systems in the Yinggehai and Qiongdongnan basins,South China Sea. Chinese Science Bulletin, 46(1): 69-72] [9] 庞雄,朱明,柳保军,颜承志,胡琏,郑金云. 2014. 南海北部珠江口盆地白云凹陷深水区重力流沉积机理. 石油学报, 35(4): 646-653. [Pang X,Zhu M,Liu B J,Yan C Z,Hu L,Zheng J Y.2014. The mechanism of gravity flow deposition in Baiyun sag deepwater area of the northern South China Sea. Acta Petrolei Sinica, 35(4): 646-653] [10] 王华,陈思,甘华军,廖计华,孙鸣. 2015. 浅海背景下大型浊积扇研究进展及堆积机制探讨: 以莺歌海盆地黄流组重力流为例. 地学前缘, 22(1): 21-34. [Wang H,Chen S,Gan H J,Liao J H,Sun M.2015. Accumulation mechanism of large shallow marine turbidite deposits: A case study of gravity flow deposits of the Huangliu Formation in Yinggehai Basin. Earth Science Frontiers, 22(1): 21-34] [11] 王英民,王海荣,邱燕,彭学超,张文明,李文成. 2007. 深水沉积的动力学机制和响应. 沉积学报, 25(4): 495-504. [Wang Y M,Wang H R,Qiu Y,Peng X C,Zhang W M,Li W C.2007. Process of dynamics and its response of deep-water sedimentation. Acta Sedimentologica Sinica, 25(4): 495-504] [12] 汪品先. 2009. 深海沉积与地球系统. 海洋地质与第四纪地质, 29(4): 1-11. [Wang P X.2009. Deep sea sediments and earth system. Marine Geology & Quaternary Geology, 29(4): 1-11] [13] 吴时国,秦蕴珊. 2009. 南海北部陆坡深水沉积体系研究. 沉积学报, 27(5): 922-930. [Wu S G,Qin Y S.2009. The research of deepwater depositional system in the Northern South China Sea. Acta Sedimentologica Sinica, 27(5): 922-930] [14] 解习农,陈志宏,孙志鹏,姜涛,何云龙. 2012. 南海西北陆源深水沉积体系内部构成特征. 地球科学, 37(4): 627-634. [Xie X N,Chen Z H,Sun Z P,Jiang T,He Y L.2012. Depositional architecture characteristics of deepwater depositional systems on the continental margins of Northwestern South China Sea. Earth Science, 37(4): 627-634] [15] 翟明国,杨树锋,陈宁华,陈汉林. 2018. 大数据时代: 地质学的挑战与机遇. 中国科学院院刊, 33(8): 825-831. [Zhai M G,Yang S F,Chen N H,Chen H L.2018. Big data epoch: Challenges and opportunities for Geology. CAS Bulletin, 33(8): 825-831] [16] 赵鹏大. 2018. 地质大数据特点及其合理开发利用. 地学前缘, 26(4): 1-5. [Zhao P D.2018. Characteristics and rational utilization of geological big data. Earth Science Frontiers, 26(4): 1-5] [17] 郑荣才,郑哲,高博禹,王昌勇. 2013. 珠江口盆地白云凹陷珠江组海底扇深水重力流沉积特征. 岩性油气藏, 25(2): 1-8. [Zheng R C,Zheng Z,Gao B Y,Wang C Y.2013. Sedimentary features of the gravity flows in submarine fan of Zhujiang Formation in Baiyun Sag,Pearl River Mouth Basin. Lithologic Reservoirs, 25(2): 1-8] [18] 朱筱敏,谈明轩,董艳蕾,李维,秦祎,张自力. 2019. 当今沉积学研究热点讨论: 第20届国际沉积学大会评述. 沉积学报, 37(1): 1-16. [Zhu X M,Tan M X,Dong Y L,Li W,Qin Y,Zhang Z L.2019. Current hot topics of Sedimentology: Comment on the 20th international Sedimentological Congress. Acta Sedimentologica Sinica, 37(1): 1-16] [19] Abreu V,Sullivan M,Pirmez C,Mohrig D.2003. Lateral accretion packages(LAPs): An important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20: 631-648. [20] Amos K,Peakall J,Bradbury P W,Roberts M,Keevil G,Gupta S.2010. The influence of bend amplitude and planform morphology on flow and sedimentation in submarine channels. Marine and Petroleum Geology, 27: 1431-1447. [21] Bell D,Kane I A,Pontén A S M,Flint S S,Hodgson D M.2018. Spatial variability in depositional reservoir quality of deep-water channel fill and lobe deposits. Marine and Petroleum Geology, 98: 97-115. [22] Biscara L,Mulder T,Gonthier E,Cremer M,Faugères J C,Garlan T.2010. Migrating submarine furrows on Gabonese margin(West Africa)from Miocene to present: Influence of bottom currents?Geo-Temas, 11: 21-22. [23] Bouma A H.2000. Coarse-grained and fine-grained turbidite systems as end member models: Applicability and dangers. Marine and Petroleum Geology, 17: 137-143. [24] Bourget J,Zaragosi S,Mudler T,Schneider J L,Garlan T,Wagoner Toer A,Mas V,Ell-Zimmermann N.2010. Hyperpycnal-fed turbidite lobe architecture and recent sedimentary processes: A case study from the Al Batha turbidite system,Oman margin. Sedimentary Geology, 229: 144-159. [25] Casciano C,Patacci M,Longhitano S,Tropeano M,Mccaffrey W,Celma C.2019. Multi-scale analysis of a migrating submarine channel system in a tectonically-confined basin: The Miocene Gorgoglione Flysch Formation,southern Italy. Sedimentology, 66: 205-240. [26] Celma C,Teloni R,Rustichelli A.2014. Large-scale stratigraphic architecture and sequence analysis of an early Pleistocene submarine canyon fill,Monte Ascensione succession(Peri-Adriatic basin,eastern central Italy). International Journal of Earth Sciences,103: 843-875. [27] Clark J D,Pickering K T.1996. Architectural elements and growth patterns of submarine channels: Application to hydrocarbon exploration. AAPG, 80: 194-221. [28] Covault J A,Kostic S,Paull C K,Sylvester Z,Fildani A.2017. Cyclic steps and related supercritical bedforms: Building blocks of deep-water depositional systems,western North America. Marine Geology, 393: 4-20. [29] Cross N,Cunningham A,Cook R,Taha A,Esmaie E,Swidan N.2009. Three-dimensional seismic geomorphology of a deep-water slope-channel system: The Sequoia field,offshore west Nile Delta,Egypt. AAPG, 93(8): 1063-1086. [30] Cui H Y,Wu P K,Liu Y J,Nie Z M,Liu Y L,Ren Y Z.2015. Gravity flow channel character and reservoir prediction of the Miocene Congo fan basin,West Africa. Journal of African Earth Sciences, 108: 15-21. [31] Dade W B, Huppert H E.1995. A box model for non-entraining,suspension-driven gravity surges on horizontal surfaces. Sedimentology, 42: 453-471. [32] Deptuck M E, Sylvester Z. 2018. Submarine Fans and Their Channels,Levees,and Lobes. In: Micallef A,Krastel S,Savini A(eds). Submarine Geomorphology,Springer Geology,doi: 10.1007/978/-3-319-5782-1_15. [33] Deptuck M E,Sylvester Z,Pirmez C,O'Byrne C.2007. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Benin-major Canyon,western Niger Delta slope. Marine and Petroleum Geology, 24: 406-433. [34] Edwards D A,Leeder M R,Best J L,Pantin H M.1994. On experimental reflected density currents and the interpretataion of certain turbidites. Sedimentology, 41: 437-461. [35] Englert R G,Hubbard S M,Coutts D S,Matthews W A.2018. Tectonically controlled initiation of contemporaneous deep-water channel systems along a Late Cretaceous continental margin,western British Columbia,Canada. Sedimentology, 65: 2404-2438. [36] Garcia M,Parker G.1989. Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition. Science, 245: 393-396. [37] Gong C L,Wang Y M,Steel R,Peakall J,Zhao X M,Su Q L.2016a. Flow processes and sedimentation in unidirectionally migrating deep-water channels: From a three-dimensional seismic perspective. Sedimentology, 63: 645-661. [38] Gong C L,Steel R J,Wang Y M,Lin C S,Olariu C.2016b. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater. Earth-Science Reviews, 157: 32-60. [39] Gong C L,Wang Y M,Rebesco M,Salon S,Steel R J.2018a. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels?Geology, 46: 551-554. [40] Gong C L,Bulm M D,Wang Y M,Lin C S,Xu Q.2018b. Can climatic signals be discerned in a deep-water sink? An answer from the Pearl River source-to-sink sediment-routing system. GSA, 130: 661-677. [41] Gong C L,Steel R J,Wang Y M,Sweet M L,Xian B Z,Xu Q,Zhang B J.2019. Shelf-edge delta overreach at the shelf break can guarantee the delivery of terrestrial sediments to deep water at all sea-level stands. AAPG, 103: 65-90. [42] Hansen L,Janocko M,Kane I,Kneller B.2017. Submarine channel evolution,terrace development,and preservation of intra-channel thin-bedded turbidites: Mahin and Avon channels,offshore Nigeria. Marine Geology, 383: 146-167. [43] He Y L,Xie X N,Benjamin C.2013. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin,northern South China Sea. Marine and Petroleum Geology, 41: 264-276. [44] He Z G,Zhao L,Hu P,Yu C H,Lin Y T.2018. Investigations of dynamic behaviors of lock-exchange turbidity currents down a slope based on direct numerical simulation. Advances in Water Resources, 119: 164-177. [45] Hernández-Molina F J,Llave E,Stow D A V. 2008. Contiental slope contourites. In: Rebesco M, Camerlenghi A(eds). Contourites Developments in Sedimentology 60. Elsevier: 379-408. [46] Hughes C J E.2016. First wide-angle view of channelized turbidity currents links migrating cyclic steps to flow characteristics. Nature Communation, 7: 11896. doi: 10.1038/ncomms11896(2016). [47] Janocko M,Nemec W,Henriksen S,Warchol M.2013a. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41: 7-34. [48] Janocko M,Cartigny M B J,Nemec W,Hansen E W M.2013b. Turbidity current hydraulics and sediment deposition in erodible sinuous channels: Laboratory experiments and numerical simulations. Marine and Petroleum Geology, 41: 222-249. [49] Jobe Z,Bernhardt A,Lowe D.2010. Facies and architectural asymmetry in a conglomerate-rich submarine channel fill,Cerro Toro formation,Sierra Del Toro,Magallanes Basin,Chile. Journal of Sedimentary Research,80: 1085-1108. [50] Jolly B A,Lonergan L,Whittaker A C.2016. Growth history of fault-related folds and interaction with seabed channels in the toe-thrust region of the deep-water Niger delta. Marine and Petroleum Geology, 70: 58-76. [51] Karl H A,Kenyon N H.1989. Lateral migration of Cascadia Channel in response to accretionary tectonics. Geology, 17: 144-147. [52] Keevil G M,Peakall J,Best J L,Amos K J.2006. Flow structure in sinuous submarine channels: Velocity and turbulence structure of an experimental submarine channel. Marine Geology, 229: 241-257. [53] Khan Z, Arnott R.2011. Stratal attributes and evolution of asymmetric inner-and outer-bend levee deposits associated with an ancient deep-water channel-levee complex within the Isaac Formation,southern Canada. Marine and Petroleum Geology, 28: 824-842. [54] Kneller B, Buckee C.2000. The structure and fluid mechanics of turbidity currents: A review of some recent studies and their geological implications. Sedimentology, 47: 62-94. [55] Kolla V,Boures P,Safa P.2001. Evolution of deep-water Tertiary sinuous channels offshore Angola(West Africa)and implications for reservoir architecture. AAPG, 85(8): 1373-1405. [56] Kolla V,Posamentier H W,Wood L J.2007. Deep-water and fluvial sinuous channels: Characteristics,similarities and dissimilarities,and modes of formation. Marine and Petroleum Geology, 24: 388-405. [57] Labourdette R.2007. Integrated three-dimensional modeling approach of stacked turbidite channels. AAPG, 91(11): 1603-1618. [58] Labourdette R, Bez M.2010. Element migration in turbidite systems: Random or systematic depositional processes?AAPG, 94(3): 345-368. [59] Leeuw J,Eggenhuisen J T,Cartigny M J B.2016. Morphodynamics of submarine channel inception revealed by new experimental approach. Nature Communications, 7: 100886. doi: 10.1038/ncomms10886(2016). [60] Li H,He Y B,Wang Z Q.2010. Morphologic and sedimentary characteristics of a deep-water high sinuous channel-levee System in the Niger continental margin. Geo-Temas, 11: 99-100. [61] Li H,Wang Y M,Zhu W L,Xu Q,He Y B,Tang W,Zhuo H T,Wang D,Wu J P,Li D.2013. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea. Marine and Petroleum Geology, 43: 370-380. [62] Li P,Kneller B,Thompson P,Bozetti G,Santos T.2018. Architectural and facies organisation of slope channel fills: Upper Cretaceous Rosario Formation,Baja California,Mexico. Marine and Petroleum Geology, 92: 632-649. [63] Liu Z F,Li C F,Kulhanek D.2017. Preface: Evolution of the deep South China Sea: Integrated IODP Expedition 349 results. Marine Geology, 394: 1-3. [64] Ma B J,Wu S G,Sun Q L,Mi L J,Wang Z Z,Tian J.2015. The late Cenozoic deep-water channel system in the Baiyun Sag,Pearl River Mouth Basin: Development and tectonic effects. Deep-Sea Research Ⅱ, 122: 226-239. [65] Mayall M,Jones E,Casey M.2006. Turbidite channel reservoirs: Key elements in facies prediction and effective development. Marine and Petroleum Geology, 23: 821-841. [66] McCaffrey W,Kneller B.2001. Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG, 85: 971-988. [67] McArthur A D,Kneller B C,Souza P A,Kuchle J.2016. Characterization of deep-marine channel-levee complex architecture with palynofacies: An outcrop example from the Rosarion Formation,Baja California,Mexico. Marine and Petroleum Geology, 73: 157-173. [68] Micallef A,Krastel S,Savini A. 2018. Submarine Geomorphology. Springer Geology. http://www.springer.com/series/10172. [69] Middleton G V.1966a. Experiments on density and turbidity currents Ⅰ. Motion of the head. Canada Journal of Earth Science, 3: 523-546. [70] Middleton G V.1966b. Experiments on density and turbidity currents Ⅱ. Uniform flow of density currents. Canada Journal of Earth Science, 3: 627-636. [71] Middleton G V.1967. Experiments on density and turbidity currents Ⅲ. Deposition of sediment. Canada Journal of Earth Science, 4: 475-505. [72] Middleton V and Neal W J.1989. Experiments on the thickness of beds deposited of beds deposited by turbidity currents. Journal of Sedimentary Petroleum, 59: 297-307. [73] Migeon S,Mulder T,Savoye B,Sage F.2012. Hydrodynamic processes,velocity structure and stratification in natural turbidity currents: Results inferred from field data in the Var Turbidite System. Sedimentary Geology, 245: 48-62. [74] Motanated K, Tice M M.2016. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation,Eddy County,New Mexico inferred by comparison to settling and sorting experiments. Sedimentary Geology, 337: 69-80. [75] Mulder T,Savoye B,Syvitski J P M.1997. Numerical modeling of a mid-sized gravity flow: The 1979 Nice turbidity current(dynamics,process,sediment budget and seafloor impact). Sedimentology, 44: 305-326. [76] Mulder T,Zaragosi S,Jouanneau J M,Bellaiche G,Guérinaud S,Querneau J.2009. Deposits related to the failure of the Malpasset Dam in 1959: An analogue for hyperpycnal deposits from jökulhlaups. Marine Geology, 260: 81-89. [77] Normark W R.1970. Growth patterns of deep-sea fans. AAPG, 54: 2170-2195. [78] Omosanya K O, Harshidayat D.2019. Seismic geomorphology of Cenozoic slope deposits and deltaic clinoforms in the Great South Basin(GSB)offshore New Zealand. Geo-Marine Letter, 39: 77-99. [79] Palozzi J,Pantopoulos G,Maravelis A G,Nordsvan A,Zelilidis A.2018. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough,SE Australia. Sedimentary Geology, 364: 160-179. [80] Parsons D R,Peakall J,Aksu A E,Flood R D,Hiscott R N,Beşiktepe S,Mouland D.2010. Gravity-driven flow in a submarine channel bend: Direct field evidence of helical flow reversal. Geology, 38: 1063-1066. [81] Paull C K,Talling P J,Maier K L,Parsons D,Xu J P,Caress D W,Gwiazda R,Lundsten E M,Anderson K,Barry J P,Chaffey M,O'Reilly T,Rosenberger K J,Gales J A,Kieft B,McGann M,Simmons S M,McCan M,Sumner E J,Clare M A,Cartigny M J.2018. Powerful turbidity currents driven by dense basal layers. Nature Communication, 9: 4114. doi: 10.1038/s41467-018-06254-6. [82] Peakall J,McCaffrey B,Kneller B.2000. Perspectives a process model for the evolution,morphology,and architecture submarine channels. Journal of Sedimentary Research, 70: 434-448. [83] Picot M,Marsset L D,Dennielou B,Bez M.2016. Controls on turbidite sedimentation: Insights from a quantitative approach of submarine channel and lobe architecture(Late Quaternary Congo Fan). Marine and Petroleum Geology, 72: 423-446. [84] Popescu I,Lericolaris G,Panin N,Wong H K,Droz L.2001. Later Quaternary channel avulsions on the Danube deep-sea fan,Black Sea. Marine Geology, 179: 25-37. [85] Posamentier H W.2003. Depositional elements associated with a basin floor channel-levee system: Case study from Gulf of Mexico. Marine and Petroleum Geology, 20: 677-690. [86] Posamentier H W, Walker V.2006. Models Revisited. Tulsa,Oklahoma,U.S.A.,473-476. [87] Rasmussen S.1994. The relationship between submarine canyon fill and sea-level change: An example from Middle Miocene offshore Gabon,west Africa. Sedimentary Geology, 90: 61-75. [88] Rasmussen S,Lykke-Andersen H,Kijpers A,Troelstra S R.2003. Post-Miocene sedimentation at the continental rise of Southeast Greenland: The interplay between turbidity and contour currents. Marine Geology, 196: 37-52. [89] Reading H G, Richards M.1994. Turbidite systems in deep water basin margins classified by grain size and feeder system. AAPG, 78: 792-822. [90] Reimchen A P,Hubbard S M,Stright L,Romans B W.2016. Using sea-floor morphometrics to constrain stratigraphic models of sinuous submarine channel systems. Marine and Petroleum Geology, 77: 92-115. [91] Saller A H,Noah J T,Ruzuar A P,Schneider R.2004. Linked lowstand delta to basin-floor fan deposition offshore Indonesia: An analog for deep-water reservoir systems. AAPG, 88: 21-46. [92] Saller A, Dharmasamadhi I N W.2012. Controls on the development of valleys,canyons,and unconfined channel-levee complexes on the Pleistocene Slope of East Kalimantan,Indonesia. Marine and Petroleum Geology, 29: 15-34. [93] Schwenk T,Spieβ V,HÜbscher C,Breitzke M.2003. Frequent channel avulsions within the active channel-levee system of the middle Bengal Fan: An exceptional channel-levee development derived from Parasound and Hydrosweep data. Deep-Sea Research Ⅱ, 50: 1023-1045. [94] Séranne M, Abeigne C R.1999. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin(west Africa)Consequences for sedimentation and southeast Atlantic upwelling. Sedimentary Geology, 128: 179-199. [95] Shanmugam G.2000.50 years of the turbidite paradigm(1950s-1990s): deep-water processes and facies models: A critical perspective. Marine and Petroleum Geology, 17: 285-342. [96] Shanmugam G, Moiola R J.1995. Reinterpretation of depositional processes in a classic flysch sequence(Pennsylvanian Jackfork Group),Ouachita Mountains,Arkansas and Oklahoma. AAPG, 79: 672-695. [97] Skene K I,Mulder T,Syvitski J P M.1997. A model predicting the behavior of turbidity currents generated at river mouths. Computer Geosciences, 23: 975-991. [98] Stevenson C J,Feldens P,Georgiopoulou A,Schönke M,Krastel S,Piper D J W,Lindhorst K,Mosher D.2018. Reconstructing the sediment concentration of a giant submarine gravity flow. Nature Communication, 9: 2616. doi: 10.1038/s41467-018-05042-6. [99] Stow D A V, Mayall M.2000. Deep-water sedimentary systems: New models for the 21st century. Marine and Petroleum Geology, 17: 125-135. [100] Walker.1978. Deep-water sandstone facies and ancient submarine fans: Models for exploration for stratigraphic trap. The American Association of Petroleum Geologists, 62(6): 932-966. [101] Wynn R B,Cronin B T,Peakall J.2007. Sinuous deep-water channels: Genesis,geometry and architecture. Marine and Petroleum Geology, 24: 341-387. [102] Xu J P,Barry J P,Paull C K.2013. Small-scale turbidity currents in a big submarine canyon. Geology, 41: 143-146. [103] Zhang J J,Wu S H,Wang X,Lin Y,Fan H J,Jiang L,Wan Q H,Yin H,Lu Y.2015. Reservoir quality variations within a sinuous deep water channel system in the Niger Delta Basin,offshore West Africa. Marine and Petroleum Geology, 63: 166-188. [104] Zhang Y W,Liu Z F,Zhao Y L,Colin C,Zhang X D,Wang M,Zhao S H,Keller B.2018. Long-term in situ observations on typhoon-triggered turbidity currents in the deep sea. Geology, 46: 675-678. [105] Zhong G F,Cartigny M J B,Kuang Z G,Wang L L.2015. Cyclic steps along the South Taiwan Shoal and West Penghu submarine canyons on the northeastern continental slope of the South China Sea. Geological Society of America Bulletin, 127: 804-824. [106] Zhu M,Graham S,Pang X,McHargue T.2010. Characteristics of migrating submarine canyons from the middle Miocene to present: Implications for paleoceanographic circulation,northern South China Sea. Marine and Petroleum Geology, 27: 307-319.