Sedimentary types and features of gravity flow depositional systems from Late Oligocene to Early Miocene in Liwan sag, Pearl River Mouth Basin
Xing Zuo-Chang1, 2, Zhang Zhong-Tao3, Lin Chang-Song4, Zhang Bo3, Hong Fang-Hao2, Gong Yue2
1. Beijing Research Institute of Uranium Geology, Beijing100029, China; 2. School of Energy Resources, China University of Geosciences, Beijing100083, China; 3. Research Institute of Shenzhen Branch, CNOOC, Shenzhen518000, China; 4. School of Ocean Sciences, China University of Geosciences, Beijing100083, China
Abstract The sedimentary characteristics of gravity flow depositional systems(GFDS)in Liwan sag,Pearl River Mouth Basin,has not been clear. Based on a large number of high-revolution seismic data and a small amount of borehole data,the sedimentary types,spatial-temporal evolution,and controlling factors of the gravity flow depositional systems in Zhuhai Formation and the basal Zhujiang Formation in the Liwan sag are summarized. Four sedimentary types of the GFDS,can be identified according to the different seismic facies associations. Pordelta turbidite fan,the first type,is relatively small-scale compared with other type,but formed at the same time with the shelf edge delta,which is likely to be sand rich. Mass transport complex deposition,the second type,is featured by fault scarps,multiple small detachment faults,internal deformation structures such as sliding and compression,and overall southeast movement. The channelized slope fan,the third type,with lots of small channels on the head,contains microfacies such as turbidite channel,channel-levee complex and crevasse splay. The basin floor fan,the fourth type,is a bidirectionally down-lapped,mound-shaped and strong amplitude continuous intermediate-frequency reflection seismic facie association,and its microfacies such as incised valley,channel filling,front crevasse fan and sheet like lobe can be recognized. It is believed that the coupling of tectonics,climate,sea level change and sediment supply results in the GFDS in the study area and different types of GFDS are formed at different period during the base level cycle change. This research can provide a reference for the summary of gravity flow depositional law and hydrocarbon exploration in the ultra-deep water area.
Fund:Co ̄funded by Nuclear Energy Development Project on Songliao Basin (No. [2017]1403) and the National Natural Science Foundation of China(Nos.91328201,91528301)
Corresponding Authors:
Lin Chang-Song,born in 1958,is a professor and Ph.D. supervisor. He is mainly engaged in researches on basin analysis and sedimentology. E-mail: lincs@cugb.edu.cn.
About author: Xing Zuo-Chang,born in 1988,is a doctor and an engineer. He is mainly engaged in research on sedimentology. E-mail: xzcxing@163.com.
Cite this article:
Xing Zuo-Chang,Zhang Zhong-Tao,Lin Chang-Song et al. Sedimentary types and features of gravity flow depositional systems from Late Oligocene to Early Miocene in Liwan sag, Pearl River Mouth Basin[J]. JOPC, 2020, 22(6): 1143-1156.
Xing Zuo-Chang,Zhang Zhong-Tao,Lin Chang-Song et al. Sedimentary types and features of gravity flow depositional systems from Late Oligocene to Early Miocene in Liwan sag, Pearl River Mouth Basin[J]. JOPC, 2020, 22(6): 1143-1156.
[1] 戴朝成,郑荣才,戴朝勇. 2014. 珠江口盆地白云凹陷深水扇沉积相特征. 东华理工大学学报(自然科学版), 37(3): 249-256. [Dai C C,Zheng R C,Dai C Y.2014. Sedimentary facies characters of Baiyun depression deep-water fan in Pearl River Mouth Basin. Journal of East China Institute of Technology(Natural Science), 37(3): 249-256] [2] 何家雄,陈胜红,刘海龄,刘士林. 2009. 珠江口盆地白云凹陷北坡—番禺低隆起天然气成因类型及其烃源探讨. 石油学报, 30(1): 16-21. [He J X,Chen S H,Liu H L,Liu S L.2009. Natural gas genetic types and source rocks in the northern slope of Baiyun Sag to Panyu Low Uplift in Pearl River Mouth Basin. Acta Petrolei Sinica, 30(1): 16-21] [3] 纪沫,张功成,赵志刚,杨海长,曾清波. 2014. 南海北部深水区荔湾凹陷构造演化及其石油地质意义. 地质通报, 33(5): 723-732. [Ji M,Zhang G C,Zhao Z G,Yang H C,Zeng Q B.2014. The tectonic evolution of Liwan sag in the deep-water area of the South China Sea and its oil geological significance. Geological Bulletin of China, 33(5): 723-732] [4] 李磊. 2010. 被动陆缘深水扇沉积构型及主控因素分析. 中国石油大学(北京)博士论文: 25-96. [Li L.2010. Analysis of Sedimentary Architecture and Main Controlling Factors of Passive Margin Submarine Fans. Doctoral dissertation of China University of Petroleum(Beijing): 25-96] [5] 林畅松,施和生,李浩,何敏,张忠涛,宫越,张博,张曼莉,舒梁峰,马铭. 2018. 南海北部珠江口盆地陆架边缘斜坡带层序结构和沉积演化及控制作用. 地球科学, 43(10): 3407-3422. [Lin C S,Shi H S,Li H,He M,Zhang Z T,Gong Y,Zhang B,Zhang M L,Shu L F,Ma M.2018. Sequence architecture,depositional evolution and controlling processes of continental slope in Pearl River Mouth Basin,northern South China Sea. Earth Science, 43(10): 3407-3422] [6] 柳保军,庞雄,颜承志,刘军,连世勇,何敏,申俊. 2011. 珠江口盆地白云深水区渐新世—中新世陆架坡折带演化及油气勘探意义. 石油学报, 32(2): 234-242. [Liu B J,Pang X,Yan C Z,Liu J,Lian S Y,He M,Shen J.2011. Evolution of the Oligocene-Miocene shelf slope-break zone in the Baiyun deep-water area of the Pearl River Mouth Basin and its significance in oil-gas exploration. Acta Petrolei Sinica, 32(2): 234-242] [7] 米立军,柳保军,何敏,庞雄,刘军. 2016. 南海北部陆缘白云深水区油气地质特征与勘探方向. 中国海上油气, 28(2): 10-22. [Mi L J,Liu B J,He M,Pang X,Liu J.2016. Petroleum geology characteristics and exploration direction in Baiyun deep water area,northern continental margin of the South China Sea. China Offshore Oil and Gas, 28(2): 10-22] [8] 庞雄,陈长民,吴梦霜,何敏,吴湘杰. 2006. 珠江深水扇系统沉积和周边重要地质事件. 地球科学进展,21(8): 793-799. [Pang X,Chen C M,Wu M S,He M,Wu X J.2006. The Pearl River deep-water fan systems and significant geological events. Advances in Earth Science, 21(8): 793-799] [9] 庞雄,陈长民,邵磊,王成善,朱明,何敏,申俊,连世勇,吴湘杰. 2007a. 白云运动: 南海北部渐新统—中新统重大地质事件及其意义. 地质论评, 19(2): 145-151. [Pang X,Chen C M,Shao L,Wang C S,Zhu M,He M,Shen J,Lian S Y,Wu X J.2007a. Baiyun Movement,a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications. Geological Review, 19(2): 145-151] [10] 庞雄,彭大钧,陈长民,朱明,何敏,申俊,柳保军. 2007b. 三级“源—渠—汇”耦合研究珠江深水扇系统. 地质学报, 81(6): 857-864. [Pang X,Peng D J,Chen C M,Zhu M,He M,Shen J,Liu B J.2007b. Three hierarchies“source-conduit-sink”coupling analysis of the Pearl River deep-water fan system. Acta Geologica Sinca, 81(6): 857-864] [11] 庞雄,柳保军,颜承志,刘军,李元平. 2012. 关于南海北部深水重力流沉积问题的讨论. 海洋学报, 34(3): 114-119. [Pang X,Liu B J,Yan C Z,Liu J,Li Y P.2012. Some reviews on deep-water gravity-flow deposition in the northern South China Sea. Acta Oceanologica Sinica, 34(3): 114-119] [12] Posamentier H W,Venkatarathnam K,刘化清. 2019. 深水浊流沉积综述. 沉积学报, 37(5): 879-903. [Posamentier H W,Venkatarathnam K,Liu H Q.2019. An overview of deep-water turbidite deposition. Acta Sedimentologica Sinica, 37(5): 879-903] [13] 乔博,张昌民,李少华,杜家元,朱锐. 2013. 珠江口盆地惠州地区新生界珠海组和珠江组重力流沉积特征. 古地理学报, 15(1): 69-75. [Qiao B,Zhang C M,Li S H,Du J Y,Zhu R.2013. Feature of gravity flow deposit of the Zhuhai and Zhujiang Formations of Cenozoic in Huizhou area,Pearl River Mouth Basin. Journal of Palaeogeography(Chinese Edition), 15(1): 69-75] [14] 任金锋. 2016. 琼东南盆地陆架边缘斜坡地形的定量演化过程. 中国地质大学博士论文: 38-146. [Ren J F.2016. The Quantitative Evolution of Shelf-margin Clinoforms in the Qiongdongnan Basin. Doctoral dissertation of China University of Geosciences: 38-146] [15] 任建业,庞雄,雷超,袁立忠,刘军,杨林龙. 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. [Ren J Y,Pang X,Lei C,Yuan L Z,Liu J,Yang L L.2015. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea. Earth Science Frontiers, 22(1): 102-114] [16] 邵磊,雷永昌,庞雄,施和生. 2005. 珠江口盆地构造演化及对沉积环境的控制作用. 同济大学学报(自然科学版), 33(9): 1177-1181. [Shao L,Lei Y C,Pang X,Shi H S.2005. Tectonic evolution and its controlling for sedimentary environment in Pearl River Mouth Basin. Journal of Tongji University(Natural Science), 33(9): 1177-1181] [17] 王永凤,李冬,王英民,徐强. 2016. 珠江口盆地深水区油气储层发育规律及勘探方向. 海洋地质与第四纪地质, 36(3): 143-150. [Wang Y F,Li D,Wang Y M,Xu Q.2016. Deepwater oil-gas reservoir distribution pattern and its bearing on further exploration of Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 36(3): 143-150] [18] 鲜本忠,安思奇,施文华. 2014. 水下碎屑流沉积: 深水沉积研究热点与进展. 地质论评, 60(1): 39-51. [Xian B Z,An S Q,Shi W H.2014. Subaqueous debris flow: Hotspots and advances of deep-water sedimention. Geological Review, 60(1): 39-51] [19] 邢作昌,张忠涛,林畅松,冯轩,洪方浩,宫越. 2019. 珠江口盆地荔湾凹陷北部早中新世沟槽特征及其成因. 古地理学报, 21(2): 339-350. [Xing Z C,Zhang Z T,Lin C S,Feng X,Hong F H,Gong Y.2019. Features and origin of the Early Miocene grooves in northern Liwan Sag,Pearl River Mouth Basin. Journal of Palaeogeography(Chinese Edition), 21(2): 339-350] [20] 邢作昌. 2019. 珠江口盆地荔湾凹陷珠海~珠江组层序地层、沉积体系与控制因素. 中国地质大学(北京)博士论文: 39-78. [Xing Z C.2019. Sequence Stratigraphy,Depositional System and Controlling Factors of Zhuhai and Zhujiang Formation in Liwan Sag,the Pearl River Mouth Basin. Doctoral dissertation of China University of Geosciences(Beijing): 39-78] [21] 曾清波,陈国俊,张功成,纪沫,韩银学,郭帅,王龙颖. 2015. 珠江口盆地深水区珠海组陆架边缘三角洲特征及其意义. 沉积学报, 33(3): 595-606. [Zeng Q B,Chen G J,Zhang G C,Ji M,Han Y X,Guo S,Wang L Y.2015. The shelf-margin delta feature and its significance in Zhuhai Formation of deep-water area,Pearl River Mouth Basin. Acta Sedimentologica Sinica, 33(3): 595-606] [22] Barckhausen U,Engels M,Franke D,Ladage S,Pubellier M.2014. Evolution of the South China Sea: Revised ages for breakup and seafloor spreading. Marine and Petroleum Geology, 58: 599-611. [23] Bayliss N J,Pickering K T.2015. Deep-marine structurally confined channelised sandy fans: Middle Eocene Morillo System,Ainsa Basin,Spanish Pyrenees. Earth-Science Reviews, 144: 82-106. [24] Bouma A H.2004. Key controls on the characteristics of turbidite systems. The Geological Society, 222: 9-22. [25] Briais A,Patriat P,Tapponnier P.1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research(Part B: Solid Earth),98(B4): 6299-6328. [26] Clift P,Lee J I,Clark M K,Blusztajn J.2002. Erosional response of South China to arc rifting and monsoonal strengthening: A record from the South China Sea. Marine Geology, 184(3): 207-226. [27] Dixon J F,Steel R J,Olariu C.2012. River-dominated,shelf-edge deltas: Delivery of sand across the shelf break in the absence of slope incision. Sedimentology, 59(4): 1133-1157. [28] Dong D,Zhang G,Zhong K,Yuan S,Wu S.2009. Tectonic evolution and dynamics of deepwater area of Pearl River Mouth Basin,northern South China Sea. Journal of Earth Science, 20(1): 147-159. [29] Gong C,Wang Y,Xu S,Pickering K T,Peng X,Li W,Yan Q.2015. The northeastern South China Sea margin created by the combined action of down-slope and along-slope processes: Processes,products and implications for exploration and paleoceanography. Marine and Petroleum Geology, 64: 233-249. [30] Gong C,Steel R J,Wang Y,Lin C,Olariu C.2016. Grain size and transport regime at shelf edge as fundamental controls on delivery of shelf-edge sands to deepwater. Earth-Science Reviews, 157: 32-60. [31] Gong Z,Li S.2004. Gas Pool-Forming Dynamics in North Marginal Basins of South China Sea. Beijing: Science Press. [32] Jian Z,Larsen H C,Zarikian C A A,Sun Z,Stock J M,Klaus A,Boaga J.2018. Site U1505. Proceedings of the International Ocean Discovery Program, 368: 14-19. [33] Kim Y,Kim W,Cheong D,Muto T,Pyles D R.2013. Piping coarse-grained sediment to a deep water fan through a shelf-edge delta bypass channel: Tank experiments. Journal of Geophysical Research-earth Surface, 118(4): 2279-2291. [34] Laugier F J,Plink B P.2016. Defining the shelf edge and the three-dimensional shelf edge to slope facies variability in shelf-edge deltas. Sedimentology, 63(5): 1280-1320. [35] Li Q,Wang P,Zhao Q,Shao L,Zhong G,Tian J,Cheng X,Jian Z,Su X.2006. A 3<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml1-1671-1505-22-6-1143"><mml:msup><mml:mrow><mml:mn>3</mml:mn></mml:mrow><mml:mrow/></mml:msup></mml:math></inline-formula>Ma lithostratigraphic record of tectonic and paleoceanographic evolution of the South China Sea. Marine Geology, 230(3-4): 217-235. [36] Lin C,He M,Steel R J,Zhang Z,Li H,Zhang B,Wu W,Shu L,Tian H,Zhang X,Xing Z,Wang S,Zhang M.2018a. Changes in inner- to outer-shelf delta architecture,Oligocene to Quaternary Pearl River shelf-margin prism,northern South China Sea. Marine Geology, 404: 187-204. [37] Lin C,Jiang J,Shi H,Zhang Z,Liu J,Qin C,Li H,Ran H,Wei A,Tian H,Xing Z,Yao Q.2018b. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea: Responses to tectonic processes and changes in sea level. Basin Research, 30: 568-595. [38] Lowe D R.1982. Sediment gravity flows: Ⅱ. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Research, 52(6): 343-361. [39] Morley C K.2016. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120: 62-86. [40] Moscardelli L,Wood L,Mann P.2006. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela. AAPG Bulletin, 90(7): 1059-1088. [41] Posamentier H W,Kolla V.2003. Seismic geomorphology and stratigraphy of depositional elements in deep-water settings. Journal of Sedimentary Research, 73(3): 367-388. [42] Prather B E,O,Byrne C,Pirmez C,Sylvester Z.2017. Sediment partitioning,continental slopes and base-of-slope systems. Basin Research, 29(3): 394-416. [43] Reading H G,Richards M.1994. Turbidite systems in deep water basin marine are classification by grain size and feeder system. AAPG Bulletin, 78: 792-822. [44] Shanmugam G.2002. Ten turbidite myths. Earth Science Reviews, 58(3): 311-341. [45] Shanmugam G.2016. Submarine fans: A critical retrospective(1950-2015). Journal of Palaeogeography, 5(2): 110-184. [46] Steel R J,Milliken K L.2013. Major advances in siliciclastic sedimentary geology,1960-2012. Special Paper of the Geological Society of America, 500: 121-167. [47] Sun Q,Cartwright J,Wu S,Zhong G,Wang S,Zhang H.2016. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change. Marine and Petroleum Geology, 77: 75-91. [48] Sun Q,Alves T,Xie X,He J,Li W,Ni X.2017. Free gas accumulations in basal shear zones of mass-transport deposits(Pearl River Mouth Basin,South China Sea): An important geohazard on continental slope basins. Marine and Petroleum Geology, 81: 17-32. [49] Sun Q,Cartwright J,Xie X,Lu X,Yuan S,Chen C.2018. Reconstruction of repeated Quaternary slope failures in the northern South China Sea. Marine Geology, 401: 17-35. [50] Sylvester Z,Deptuck M E,Prather B E,Pirmez C,O,Byrne C.2012. Seismic stratigraphy of a shelf-edge delta and linked submarine channels in the northeastern gulf of Mexico. SEPM Society for Sedimentary Geology Special Publication, 99: 31-59. [51] Talling P J,Masson D G,Sumner E J,Malgesini G.2012. Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, 59(7): 1937-2003. [52] Xie X,Ren J,Pang X,Lei C,Chen H.2019. Stratigraphic architectures and associated unconformities of Pearl River Mouth Basin during rifting and lithospheric breakup of the South China Sea. Marine Geophysical Research, 40: 129-144. [53] Xu Q,Shi W,Xie X,Manger W,McGuire P,Zhang X,Wang R,Xu Z.2016. Deep-lacustrine sandy debrites and turbidites in the Lower Triassic Yanchang Formation,southeast Ordos Basin,central China: Facies distribution and reservoir quality. Marine and Petroleum Geology, 77: 1095-1107. [54] Zhang M,Lin C,He M,Zhang Z,Li H,Feng X,Tian H,Liu H.2019. Stratigraphic architecture,shelf-edge delta and constraints on the development of the Late Oligocene to Early Miocene continental margin prism,the Pearl River Mouth Basin,northern South China Sea. Marine Geology, 416: 105982.