Hydrothermal activities in the middle Permian Maokou Formation in eastern Sichuan Basin
Li Hong1, Wang Liang-Jun2, Liu Yi-Qun1, Zeng Tao2, Zhang Dong-Dong1, Li Wen-Hou1, Zhou Ding-Wu3, Yang Kang1, Dong Yang-Kun1, Peng Yi-Feng1
1 Department of Geology/State Key Laboratory of Continental Dynamics,Northwest University,Xi'an 710069,China; 2 SINOPEC Exploration Company,Chengdu 610041,China; 3 College of Earth Science and Engineering,Shandong University of Science and Technology,Shandong Qingdao 266590,China
Abstract The abundant hydrothermal activities have been found in the Maokou Formation of middle Permian in the Sichuan Basin. Based on the field investigation and core observation, many kinds of measured methods are applied to discuss the hydrothermal activity characteristics of the carbonate rocks in the Maokou Formation of middle Permian in the Sichuan Basin. Two types of hydrothermal activities in Maokou Formation are identified in eastern Sichuan Basin: one is hydrothermal silica, formed as thin layered silicalite or nodules; the other is featured by hydrothermal carbonate minerals, including coarse calcite and dolomite that are filled in the tensile fractures or formed as the “snow flake” aggregates, sometimes they occur as few metal sulfides including the pyrite and sphalerite. The Al-Fe-Mn end-member diagram of cherts and correlation diagrams between silica and other main elements indicate the hydrothermal origin, and the silica comes from both the hydrothermal and terrestrial sources. The in situ sulfur isotopes of pyrite and sphalerite range between -3.91‰ and -6.87‰, implying the mixed sulfur sources of microbial and basic magma. Both coarse calcite and saddle dolomite in the veins have similar geochemical features, such as higher CaO content than those in stoichiometry calcite and dolomite, rich in Sr and U, poor in REE and Ti, obvious negative anomalies of Ce/Ce*, and positive anomalies of Eu/Eu*, and very positive Y anomalies, illustrating the hydrothermal origin and the mixed sources of fluids related with volcanic activity and the Ca-bearing underground water. High concentration of Ge and Cd, and ratios of Zn/Cd and Zn/Fe in sphalerite reflect the medium mineral-forming temperatures. The homogenization temperature ranges between 54.7℃ and 294.3℃ measured from fluid inclusions in microcrystalline quartz, calcite and dolomite, which are consistent with the features illustrated by the REEs and trace elements. The results show that the first occurrence of chert nodules and chips penetrating into the rocks is the indicant of the beginning of hydrothermal activities in Maokou Formation. The tensile fractures and the hydrothermal dolomitization caused by carbonate-rich fluid in host rocks significantly improve the reservoir properties of dolomite.
Fund:Co-funded by the Major Scientific and Technological Projects of Sinopec(No. P16082) and the National Natural Science Foundation of China(Nos. 41272115,41572086)
Corresponding Authors:
Wang Liang-Jun,born in 1972,is a senior engineer. He is mainly engaged in researches of petroleum and gas geology and evaluation of exploration targets. E-mail: wljaa163@163.com.
About author: Li Hong,born in 1975,is an associate professor in Northwest University. She mainly focuses on the teaching and researches of sedimentology and reservoir geology. E-mail: lihong2008@nwu.edu.cn.
Cite this article:
Li Hong,Wang Liang-Jun,Liu Yi-Qun et al. Hydrothermal activities in the middle Permian Maokou Formation in eastern Sichuan Basin[J]. JOPC, 2021, 23(1): 153-174.
Li Hong,Wang Liang-Jun,Liu Yi-Qun et al. Hydrothermal activities in the middle Permian Maokou Formation in eastern Sichuan Basin[J]. JOPC, 2021, 23(1): 153-174.
[1] 陈明启. 1989. 川西南下二叠阳新统白云岩成因探讨. 沉积学报, 7(2): 45-50. [Chen M Q.1989. A discussion of the origin of Yangxin dolomite of Lower Permian in Southwest Sichuan. Acta Sedimentologica Sinica, 7(2): 45-50] [2] 陈轩,赵文智,张利萍,赵宗举,刘银河,张宝民,杨雨. 2012. 川中地区中二叠统构造热液白云岩的发现及其勘探意义. 石油学报, 33(4): 562-569. [Chen X,Zhao W Z,Zhang L P,Zhao Z J,Liu Y H,Zhang B M,Yang Y.2012. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan Basin. Acta Petrolei Sinica, 33(4): 562-569] [3] 何幼斌,冯增昭. 1996. 四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨. 石油天然气学报, 18(4): 15-20. [He Y B,Feng Z Z.1996. Origin of fine- to coarse-grained dolostones of Lower Permian in Sichuan Basin and its peripheral regions. Journal of Jianghan Petroleum Institute, 18(4): 15-20] [4] 侯明才,王文楷,张本健,王维,李秀华,邓敏,裴森奇,杨毅. 2013. 四川周公山—汉王场地区峨眉山玄武岩中流体类型及活动期次. 岩石学报, 29(8): 2709-2718. [Hou M C,Wang W K,Zhang B J,Wang W,Li X H,Deng M,Pei S Q,Yang Y.2013. Fluid types and activities of Emeishan basalt in Zhougong mountain-Hanwang field of Sichuan Province. Acta Petrologica Sinica, 29(8): 2709-2718] [5] 李先福,李建威,李紫金,傅昭仁. 2001. 水力压裂角砾岩: 一种重要的地质异常和找矿标志. 地球科学, 26(2): 135-138. [Li X F,Li J W,Li Z J,Fu Z R.2001. Hydraulic fracturing breccia: an important geological anomaly and ore-finding indicator. Earth Science, 26(2): 135-138] [6] 李毅,沈浩,石学文,汪华,陈莎,袁小玲. 2013. 川东—川中地区茅口组白云岩成因初探及“热次盆”概念的提出. 天然气勘探与开发, 36(4): 1-3. [Li Y,Shen H,Shi X W,Wang H,Chen S,Yuan X L.2013. Distribution and origin of dolomites in Maokou Formation,eastern and central Sichuan Basin. Natural Gas Exploration & Development, 36(4): 1-3] [7] 林良彪,陈洪德,朱利东. 2010. 川东茅口组硅质岩地球化学特征及成因. 地质学报, 84(4): 500-507. [Lin L B,Chen H D,Zhu L D.2010. The origin and geochemical characteristics of Maokou Formation silicalites in the eastern Sichuan Basin. Acta Geologica Sinica, 84(4): 500-507] [8] 刘树根,黄文明,张长俊,赵霞飞,戴苏兰,张志敬,秦川. 2008. 四川盆地白云岩成因的研究现状及存在问题. 岩性油气藏, 20(2): 6-15. [Liu S G,Huang W M,Zhang C J,Zhao X F,Dai S L,Zhang Z J,Qin C.2008. Research status of dolomite genesis and its problems in Sichuan Basin. Lithologic Reservoirs, 20(2): 6-15] [9] 刘万洙,黄玉龙,庞彦明,王璞珺. 2010. 松辽盆地营城组中基性火山岩成岩作用: 矿物晶出序列、杏仁体充填和储层效应. 岩石学报, 26(1): 158-164. [Liu W Z,Huang Y L,Pang Y M,Wang P J.2010. Diagenesis of intermediate and mafic volcanic rocks of Yingcheng Formation(K1y)in the Songliao Basin: sequential crystallization,amygdule filling and reservoir effect. Acta Petrologica Sinica, 26(1): 158-164] [10] 刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣. 1984. 元素地球化学. 北京: 科学出版社: 360-420. [Liu Y J,Cao L M,Li Z L,Wang H N,Chu T Q,Zhang J R.1984. Element Geochemistry. Beijing: Science Press,360-420] [11] 罗志立. 2009. 峨眉地裂运动和四川盆地天然气勘探实践. 新疆石油地质, 30(4): 419-424. [Luo Z L.2009. Emei taphrogenesis and natural gas prospecting practices in Sichuan Basin. Xinjiang Petroleum Geology, 30(4): 419-424] [12] 蒋裕强,谷一凡,李开鸿,李顺,罗明生,何冰. 2018. 四川盆地中部中二叠统热液白云岩储渗空间类型及成因. 天然气工业, 38(2): 16-24. [Jiang Y Q,Gu Y F,Li K H,Li S,Luo M S,He B.2018. Space types and origin of hydrothermal dolomite reservoirs in the Middle Permian strata,central Sichuan Basin. Natural Gas Industry, 38(2): 16-24] [13] 金振奎,冯增昭. 1999. 滇东—川西下二叠统白云岩的形成机理: 玄武岩淋滤白云化. 沉积学报, 17(3): 383-389. [Jin Z K,Feng Z Z.1999. Origin of dolostones of the Lower Permian in East Yunnan-West Sichan: Dolomitization through leaching of basalts. Acta Sedimentologica Sinica, 17(3): 383-389] [14] 潘文庆,侯贵廷,齐英敏,张鹏,陈永权,鞠玮. 2013. 碳酸盐岩构造裂缝发育模式探讨. 地学前缘, 20(5): 188-195. [Pan W Q,Hou G T,Qi Y M,Zhang P,Chen Y Q,Ju W.2013. Discussion on the development mode of structural fractures in the carbonate rocks. Earth Science Frontiers, 20(5): 188-195] [15] 童崇光. 1992. 四川盆地断褶构造形成机制. 天然气工业, 12(5): 1-6. [Tong C G.1992. Mechanism of forming fault-folded structure in Sichuan Basin. Natural Gas Industry, 12(5): 1-6] [16] 童崇光. 2000. 新构造运动与四川盆地构造演化及气藏形成. 成都理工学院学报, 27(2): 123-130. [Tong C G.2000. Relationship between Neotectonic movement and structural evolution and gas pools formation of Sichuan Basin. Journal of Chengdu University of Technology, 27(2): 123-130] [17] 汪华,沈浩,黄东,石学文,李毅,袁小玲,杨雨然. 2014. 四川盆地中二叠统热水白云岩成因及其分布. 天然气工业, 34(9): 25-32. [Wang H,Shen H,Huang D,Shi X W,Li Y,Yuan X L,Yang Y R.2014. Origin and distribution of hydrothermal dolomites of the Middle Permian in the Sichuan Basin. Natural Gas Industry, 34(9): 25-32] [18] 王运生,金以钟. 1997. 四川盆地下二叠统白云岩及古岩溶的形成与峨眉地裂运动的关系. 成都理工学院学报, 24(1): 8-16. [Wang Y S,Jin Y Z.1997. The formation of dolomite and paleokarst of the Lower Permian series in Sichuan Basin and the relation to the Emei Taphrogenesis. Journal of Chengdu University of Technology, 24(1): 8-16] [19] 王赞军,王宏超,董娣,秦娟. 2018. 华蓥山断裂带的物探成果综述. 四川地震, 42(3): 6-12. [Wang Z J,Wang H C,Dong D,Qin J.2018. Review of geophysical results of Huayingshan fault zone. Earthquake Research in Sichuan, 42(3): 6-12] [20] 徐世荣,徐锦华. 1986. 华蓥山断裂带地震勘探新成果. 石油学报, 7(3): 40-48. [Xu S R,Xu J H.1986. The new results of seismic exploration in Huayingshan fault zone. Acta Petrolei Sinica, 7(3): 40-48] [21] 殷积峰,谷志东,李秋芬. 2013. 四川盆地大川中地区深层断裂发育特征及其地质意义. 石油与天然气地质, 34(3): 376-382. [Yin J F,Gu Z D,Li Q F.2013. Characteristics of deep-rooted faults and their geological significance in Dachuanzhong area,Sichuan Basin. Oil & Gas Geology, 34(3): 376-382] [22] 余琼华,李若黔,冯祖同. 1987. 南岭地区铅锌矿床中闪锌矿的标型特征. 见: 全国第一届矿相学学术讨论会矿相学论文集. 北京: 地质出版社,80-85. [Yu Q H,Li R Q,Feng Z T.1987. Sphalerite standard type features study of lead-zinc deposits in Nanling region. In: First National Symposium on Mine Ore Petrography Physiognomy Proceedings. Beijing: Geological Publishing House,80-85] [23] 张辉善,李艳广,全守村,洪俊,孙超,李建星,杨晓勇,周家喜. 2018. 阿尔金喀腊达坂铅锌矿床金属硫化物元素地球化学特征及其对成矿作用的制约. 岩石学报, 34(8): 2295-2311. [Zhang H S,Li Y G,Quan S C,Hong J,Sun C,Li J X,Yang X Y,Zhou J X.2018. Geochemical characteristics of metallic sulfides from the Kaladaban deposit in Xinjiang and its implications for Pb-Zn ore-forming mechanism. Acta Petrologica Sinica, 34(8): 2295-2311] [24] 张荫本. 1982. 四川盆地二叠系中的白云岩化. 石油学报, 4(1): 29-33. [Zhang Y B.1982. Dolomitization in Permian rocks in Sichuan Basin. Acta Petrolei Sinica, 4(1): 29-33] [25] 周家喜,黄智龙,周国富,李晓彪,丁伟,谷静. 2009. 贵州天桥铅锌矿床分散元素赋存状态及规律. 矿物学报, 29(4): 471-480. [Zhou J X,Huang Z L,Zhou G F,Li X B,Ding W,Gu J.2009. The occurrence states and regularities of dispersed elements in Tianqiao Pb-Zn ore deposit,Guizhou Province,China. Acta Mineralogica Sinica, 29(4): 471-480] [26] 周荣军,唐荣昌,钱洪,文德华,马声浩,何玉林,蒲晓虹. 1997. 地震构造类比法的应用: 以川东地区华蓥山断裂带为例. 地震研究, 20(3): 68-74. [Zhou R J,Tang R C,Qian H,Wen D H,Ma S H,He Y L,Pu X H.1997. An application of seismotectonic analogy to the Huayingshan fault zone in East Sichuan. Journal of Seismological Research, 20(3): 68-74] [27] 周新平,何幼斌,罗进雄,徐怀民. 2012. 川东地区二叠系结核状、条带状及团块状硅岩成因. 古地理学报, 14(2): 143-154. [Zhou X P,He Y B,Luo J X,Xu H M.2012. Origin of the Permian nodular,striped and lump siliceous rock in eastern Sichuan Province. Journal of Palaeogeography(Chinese Edition), 14(2): 143-154] [28] 朱传庆,徐明,袁玉松,赵永庆,单竞男,何志国,田云涛,胡圣标. 2010. 峨眉山玄武岩喷发在四川盆地的地热学响应. 科学通报, 55(6): 474-482. [Zhu C Q,Xu M,Yuan Y S,Zhao Y Q,Shan J L,He Z G,Tian Y T,Hu S B.2010. Palaeo-geothermal response and record of the effusing of Emeishan basalts in Sichuan Basin. Chinese Science Bulletin, 55(6): 474-482] [29] Adachi M,Yamamoto K,Sugisaki R.1986. Hydrothermal chert and associated siliceous rocks from the Northern Pacific: Their geological significance as indication of ocean ridge activity. Sedimentary Geology, 47: 125-148. [30] Bao Z,Chen L,Zong C,Yuan H,Chen K,Dai M.2017. Development of pressed sulfide powder tablets for in situ sulfur and lead isotope measurement using LA-MC-ICP-MS. International Journal of Mass Spectrometry, 421: 255-262. [31] Bau M,Dulski P.1995. Comparative study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids. Contributions to Mineralogy and Petrology, 119(2-3): 213-223. [32] Davies G R,Smith Jr L B.2006. Structurally controlled hydrothermal dolomite reservoir facies: An overview. AAPG Bulletin, 90(11): 1641-1690. [33] Gromet L P,Dymek R F,Haskin L A,Korotev H R.1984. The“North American shale composite”: Its compilation,major and trace element characteristics. Geochimica et Cosmochimica Acta, 48: 2469-2482. [34] Inoue A.1995. Formation of clay minerals in hydrothermal environments. In: Velde B(ed). Origin and Mineralogy of Clays. Berlin,Heidelberg: Springer,268-329. [35] Janecky D R,Shanks Ⅲ W C.1988. Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: Chimneys,massive sulfides,and subjacent alteration zones. Canadian Mineralogist, 26: 805-825. [36] Katz D A,Eberli G P,Swart P K,Smith Jr L B.2006. Tectonic-hydrothermal brecciation associated with calcite precipitation and perme ability destruction in Mississippian carbonate reservoirs,Montana and Wyoming. AAPG Bulletin, 90(11): 1803-1841. [37] Liu X M,Gao S,Diwu C R,Yuan H L,Hu Z C.2007. Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size. Chinese Science Bulletin, 52(9): 1257-1264. [38] Sakai H,Des Marais D J,Ueda A,Moore J G.1984. Concentrations and isotope ratios of carbon,nitrogen and sulfur in ocean-floor basalts. Geochimica et Cosmochimica Acta, 48: 2433-2441. [39] Seal II R R.2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy & Geochemistry, 61: 633-677. [40] Stoffregen R E.1987. Genesis of acid-sulfate alteration and Au-Cu-Ag mineralization at Summitville,Colorado. Economic Geology, 82(6): 1575-1591. [41] Sun S S,McDonough W F.1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geological Society London Special Publication, 42: 313-345.