Research on classification of deep-water channels based on gravity flow facies
Liu Fei1, Zhao Xiao-Ming1,2, Feng Xiao-Fei1, Ge Jia-Wang1,2, Yang Li3, Yang Bao-Quan3, Yang Xi-Pu3
1 School of Geoscience and Technology,Southwest Petroleum University,Chengdu 610500,China; 2 Sichuan Key Laboratory of Natural Gas Geology,Southwest Petroleum University, Chengdu 610500,China; 3 CNOOC International Limited,Beijing 100010,China
Abstract Deep-water channel is an important reservoir for oil and gas storage in deep-water environment. At present,there are many reports on the sedimentary architecture and classification of deep-water channels,but few studies on the classification of single channel were carried out. Current classification schemes are largely based on the erosive capacity of the channel,however,due to the limitation of seismic resolution and outcrop integrity,there are great limitations in practical application. Based on 26 outcrops in the world and the drilling core data of a deep-water basin in West Africa,different gravity flow facies with different fluid dynamics are identified,including the high-density turbidity current facies(HTL),low-density turbidity current facies(LTL)and debris flow facies(DL). According to the proportion of different gravity flow facies in the channel,nine types of single channel can be divided: single high density turbidity filling channel(HTL>70%),single low density turbidity filling channel(LTL>75%),single debris flow filling channel(CL>60%),massive sandy mixed filling channel(HTL=40%~70%,LTL=40%~20%,CL<30%),gravelly sandy mixed filling channel(HTL=40%~70%,LTL<30%,CL=15%~50%),layered sandy mixed filling channel(HTL=5%~60%,LTL=40%~75%,CL<20%),clastic sand mixed filling channel(HTL<40%,LTL=40%~75%,CL=20%~40%),isophase mixed filling channel(HTL=20%~40%,LTL=20%~40%,CL=20%~40%),sandy gravel mixed filling channel(HTL<50%,LTL<60%,CL=40%~60%). Based on field outcrops and the practical application of division scheme in deep-water oilfield,we found that the vertical distribution law of different types of channels are as follows: the channels filled by debris flow lithofacies are often developed at the bottom of channel system,and the channels filled by high-density turbidity flow lithofacies are close to the middle and lower part,and the channels filled by low density turbidity current lithofacies is mainly located in the middle and upper part. According to the percentage of different gravity flow lithofacies within channel,different channel types are clearly defined. This division scheme has better applicability and maneuverability,and is beneficial to deep-water channel reservoir prediction and reservoir quality evaluation in practice.
Fund:Co-funded by the National Natural Science Foundation of China(Nos.41872142,42072183)and the Science and Technology Projects “Research on continuity and well pattern adaptability of West Africa channel turbidite reservoir” of CNOOC International Limited(No.YXKY-2019-ZY-07)
Corresponding Authors:
Zhao Xiao-Ming,born in 1982,is a professor. Now he is mainly engaged inresearches on deep-water sedimentation, and oil and gas geology. E-mail: zhxim98@163.com.
About author: Liu Fei,born in 1997,is a master degree candidate. He is mainly engaged in research on deep-water sedimentology. E-mail: liuf_e@163.com.
Cite this article:
Liu Fei,Zhao Xiao-Ming,Feng Xiao-Fei et al. Research on classification of deep-water channels based on gravity flow facies[J]. JOPC, 2021, 23(5): 951-966.
Liu Fei,Zhao Xiao-Ming,Feng Xiao-Fei et al. Research on classification of deep-water channels based on gravity flow facies[J]. JOPC, 2021, 23(5): 951-966.
[1] 操应长,金杰华,刘海宁,杨田,刘可禹,王艳忠,王健,梁超. 2021. 中国东部断陷湖盆深水重力流沉积及其油气地质意义. 石油勘探与开发, 48(2): 247-257. [Cao Y C,Jin J H,Liu H N,Yang T,Liu K Y,Wang Y Z,Wang J,Liang C. 2021. Deep-water gravity flow deposits in a lacustrine rift basin and their oil and gasgeological significance in eastern China. Petroleum Exploration and Development, 48(2): 247-257] [2] 冯潇飞,赵晓明,谭程鹏,齐昆,谢涛,张迎春,陆文明,徐睿. 2020. 深海弯曲水道内部一种特殊的沉积单元: 凹岸坝. 沉积学报, 38(2): 440-450. [Feng X F,Zhao X M,Tan C P,Qi K,Xie T,Zhang Y C,Lu W M,Xu R. 2020. A distinctive sedimentary element within the sinuous submarine channel: outer bank bar. Acta Sedimentologica Sinica, 38(2): 440-450] [3] 郭笑,李华,梁建设,邱春光,解东宁,冯鑫,饶溯,何幼斌. 2019. 坦桑尼亚盆地渐新统深水重力流沉积特征及控制因素. 古地理学报, 21(6): 971-982. [Guo X,Li H,Liang J S,Qiu C G,Xie D N,Feng X,Rao S,He Y B. 2019. Sedimentary characteristics and controlling factors of deep-watergravity flow deposits of the Oligocene in Tanzania Basin. Journal of Palaeogeography(Chinese Edition), 21(6): 971-982] [4] 黄文奥,赵晓明,谭程鹏,葛家旺,冯双奇,李晨曦,陆文明. 2020. 西秦岭直合隆地区三叠系深水水道沉积模式分析. 沉积学报, 38(5): 1061-1075. [Huang W A,Zhao X M,Tan C P,Ge J W,Feng S Q,Li C X,Lu W M. 2020. Sedimentary model analysis of Triassic deep-water channels in Zhihelong,West Qinling Mountains. Acta Sedimentologica Sinica, 38(5): 1061-1075] [5] 李建平,廖计华,方勇. 2020. 基于露头和岩心的深水重力流沉积新认识及其油气地质意义. 油气地质与采收率, 27(6): 30-37. [Li J P,Liao J H,Fang Y. 2020. New understanding of deep-water gravity flow deposition and its significance in petroleum geology based on outcrops and cores. Petroleum Geology and Recovery Efficiency, 27(6): 30-37] [6] 林煜,吴胜和,王星,路瑶,万琼华,张佳佳,张义楷. 2013. 深水浊积水道体系构型模式研究: 以西非尼日尔三角洲盆地某深水研究区为例. 地质论评, 59(3): 510-520. [Lin Y,Wu S H,Wang X,Lu Y,Wan Q H,Zhang J J,Zhang Y K. 2013. Research on architecture model of deepwater turbidity channel system: a case study of a deepwater research area in Niger Delta Basin,West Africa. Geological Review, 59(3): 510-520] [7] 刘巍,胡林,廖仪,王玲玲,何昭勇,贾曙光. 2020. 陵水凹陷中央峡谷水道砂体构型地震响应正演模拟及有利分布区预测. 中国海上油气, 32(6): 43-53. [Liu W,Hu L,Liao Y,Wang L L,He Z Y,Jia S G. 2020. Forward simulation on seismic response of channel sand body architecture in central canyon of LingShui sag and favorable zone prediction. China Offshore Oil and Gas, 32(6): 43-53] [8] 万琼华,吴胜和,陈亮,林煜,梁杰,张佳佳,路瑶. 2015. 基于深水浊积水道构型的流动单元分布规律. 石油与天然气地质, 36(2): 306-313. [Wan Q H,Wu S H,Chen L,Lin Y,Liang J,Zhang J J,Lu Y. 2015. Analysis of flow unit distribution based on architecture of deep-water turbidite channel systems. Oil And Gas Geology, 36(2): 306-313] [9] 吴胜和,岳大力,冯文杰,张佳佳,徐振华. 2021. 碎屑岩沉积构型研究若干进展. 古地理学报, 23(2): 245-262. [Wu S H,Yue D L,Feng W J,Zhang J J,Xu Z H. 2021. Research progress of depositional architecture of clastic systems. Journal of Palaeogeography(Chinese Edition), 36(2): 306-313] [10] 鲜本忠,万锦峰,董艳蕾,马乾,张建国. 2013. 湖相深水块状砂岩特征、成因及发育模式: 以南堡凹陷东营组为例. 岩石学报, 29(9): 3287-3299. [Xian B Z,Wan J F,Dong Y L,Ma Q,Zhang J G. 2013. Sedimentary characteristics,origin and model of lacustrine deepwatermassive sandstone: an example from Dongying Formation in Nanpu depression. Acta Petrologica Sinica, 29(9): 3287-3299] [11] 赵晓明,吴胜和,刘丽. 2012. 尼日尔三角洲盆地Akpo油田新近系深水浊积水道储层构型表征. 石油学报, 33(6): 1049-1058. [Zhao X M,Wu S H,Liu L. 2012. Characterization of reservoir architectures for Neogene deepwater turbidity channels of Akpo oilfield,Niger Delta Basin. Acta Petrolei Sinica, 33(6): 1049-1058] [12] 赵晓明,葛家旺,谭程鹏,张文彪,陆文明. 2019. 深海水道储层构型及其对同沉积构造响应机理的研究现状与展望. 中国海上油气, 31(5): 76-87. [Zhao X M,Ge J W,Tan C P,Zhang W B,Lu W M. 2019. Reserch status and prospect of sea channel reservoir architecture and its response mechanism to synsedimentary structure. China Offshore Oil and Gas, 31(5): 76-87] [13] 赵晓明,吴胜和,岳大力,孙立春,完颜祺琪,刘丽. 2010. 西非某油田深水海底扇岩石相类型及其识别方法研究. 测井技术, 34(5): 505-510. [Zhao X M,Wu S H,Yue D L,Sun L C,WanYan Q Q,Liu L. 2010. Research on lithofaces types and identification method of deep-water submarine fan-taking one oilfield of West African as a case. Well Logging Technology, 34(5): 505-510] [14] Abreu V,Sullivan M,Pirmez C,Mohrig D. 2003. Lateral accretion packages(LAPs): an important reservoir element in deep water sinuouschannels. Marine and Petroleum Geology, 20(6-8): 631-648. [15] Arbues P,Munoz J A,Mellere D,Marzo M,Fernandez O. 2007. Context and Architecture of the Ainsa-1-Quarry Channel Complex. Spain. Atlas of Deep-Water outcrops: AAPG Studies in Geology 56,330-332. [16] Bouma A H,Delery A M,Scott E D. 2007. Channel and levee deposits,Bloukop Farm,Tanqua Karoo,South Africa. Atlas of Deep-Water out-Crops: AAPG Studies in Geology 56,307-310. [17] Cavuoto G,Alessio V,Giuseppe N,Martelli L,Cammarosano A. 2007. A prograding Miocene turbidite system,Tempa Rossa cliffs,Italy. Atlas of Deep-water Outcrops: AAPG Studies in Geology 56,222-225. [18] Cossey S P J, Kleverlaan K. 1995. Heterogeneity within a sand-rich submarine fan, Tabernas Basin, Spain. In: Pickering K T, Hiscott R N, Kenyon N H, Ricci Lucchi F, Smith R D A (eds). Atlas of Deep Water Environments. Springer Dordrecht: 157-161. [19] Cronin B T,Celik H,Hurst A,Turkmen Ⅰ. 2005. Mud prone entrenched deep-water slope channel complexes from the eocene of eastern turkey. Geological Society London Special Publications,244(1):155-180. [20] Duerichen E T. 2005. Sedimentology and architecture of upper Eocene deep-water deposits,Talara Basin,NW Peru. Doctoral dissertation of Stanford University. [21] Dykstra M,Kneller B. 2007. Canyon San Fernando,Baja California,Mexico: a Deep-marine Channel-levee Complex that Evolved from Submarine Canyon Confinement to Unconfined Deposition. Atlas of Deep-Water out-Crops: AAPG Studies in Geology 56,226-230. [22] Gardner M,Borer J M. 2000. Submarine channel architecture along a slope to basin profile,Permain Brushy Canyon Formation,west Texas,in fine-grained turbidite systems. Society of Economic Paleontologists and Mineralogists Special Publication, 68:195-215. [23] Goyeneche J C, Slatt R M, Rothfolk A C, Davis R J, Tomasso M. 2006. Systematic geological and geophysical characterization of a deepwater outcrop for "Reservoir" simulation: Hollywood Quarry, Arkansas. In: Slatt R M, Rosen N C, Bowman M, Castagna J, Good T, Loucks R, Latimer R, Scheihing M, Smith H(eds). SEPM Society for Sedimentary Geology 26: 685-728. [24] Guillocheau F,Quemener J M,Robin C,Joseph P,Broucke O. 2004. Genetic units/parasequences of the Annot turbidite system,SE France. Geological Society of London Special Publications, 221(1): 181-202. [25] Hubbard S M,Romans B W,Graham S A. 2008. Deep-water foreland basin deposits of the Cerro Toro Formation,Magallanes basin,Chile: architectural elements of a sinuous basin axial channel belt. Sedimentology, 55(5): 1333-1359. [26] Jackson A L,Zakaria A A,Johnson H D,Tongkul F,Crevello P D. 2009. Sedimentology,stratigraphic occurrence and origin of linked debrites in the West Crocker Formation(Oligo-Miocene),Sabah,NW Borneo. Marine and Petroleum Geology, 26(10): 1957-1973. [27] Janocko J,Basilici G. 2021. Architecture of coarse-grained gravity flow deposits in a structurally confined submarine canyon(late Eocene Tokaren Conglomerate,Slovakia). Sedimentary Geology, 417: 105880. [28] Janocko M,Nemec W,Henriksen S,Warchol M. 2013. The diversity ofdeep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology, 41: 7-34. [29] Lamb M A,Anderson K S,Graham S A. 2003. Stratigraphic architecture of a sand-rich,deep-sea depositional system: the Stevens sandstone,San Joaquin Basin. AAPG Special Publication,13. [30] Lien T,Walker R G,Martinsen O J. 2010.1 Turbidites in the Upper Carboniferous Ross Formation,Western Ireland-reconstruction of a sinuous channel and sandy spillover system. Sedimentology, 50(1): 113-148. [31] Lowe D R. 1982. Sediment gravity flows;Ⅱ,Depositional models with special reference to the deposits of high-density turbiditycurrents. Journal of Sedimentary Research, 52(1): 343-61. [32] Mayall M,Jones E,Casey M. 2006. Turbidite channel reservoirs: key elementsin facies prediction and effectivedevelopment. Marine and Petroleum Geology, 23: 821-841. [33] Mccaffrey W D,Gupta S,Brunt R. 2002. Repeated cycles of submarine channel incision,infill and transition to sheet sandstone development in the alpine foreland basin,SE france. Sedimentology,49(3): 623-635. [34] Meyer L. 2004. Internal architecture of an ancient deep-water,passive margin,basin-floor fan system,Upper Kaza Group,Windermere Supergroup,Castle Creek,British Columbia. Masteral dissertation of University of Calgary: 1-201. [35] Morris W,Busby-Spera C. 1990. A submarine-fan valley-levee complex in the Upper Cretaceous Rosario Formation: implication for turbidite facies models. Geological Society of America Bulletin, 102(7): 900-914. [36] Mutti E,Normark W R. 1987. Comparing examples of modern and ancient turbidite systems: problems and concepts. In: Leggett J K,Zuffa G G(eds). Marine Clastic Sedimentology: Concepts and Case Studies. Dordrecht: Springer Netherlands,1-38. [37] Pickering K T,Cantalejo B. 2015. Deep-marine environments of the Middle Eocene Upper Hecho Group,Spanish Pyrenees: introduction. Earth-Science Reviews, 144: 1-9. [38] Posamentier H W. 2003. Depositional elements associated with a basin floor channel-levee system: case study from the Gulf of Mexico. Marine and Petroleum Geology, 20(6-8): 677-690. [39] Prather B E,Booth J R,Steffens G S,Craig P A. 1998. Classification,lithologic calibration,and stratigraphic succession of seismic facies of intraslope basins,deep-water Gulf of Mexico;errata. American Association of Petroleum Geologists Bulletin, 82(12): 707R-707R. [40] Ragusa J,Kindler P. 2018. Compositional variations in deep-sea gravity-flow deposits: a case study from the Voirons Flysch(Voirons-Wägital complex,Chablais Prealps,France). Sedimentary Geology, 377: 111-130. [41] Ruig M J D,Hubbard S M. 2006. Seismic facies and reservoir characteristics of a deep-marine channel belt in the Molasse foreland basin,Puchkirchen Formation,Austria. Aapg Bulletin, 90(5): 735-752. [42] Pyles D R,Jennette D C,Tomasso M,Beaubouef R T,Rossen C. 2010. Concepts learned from a 3d outcrop of a sinuous slope channel complex: beacon channel complex,brushy canyon formation,west Texas,U. S. A. Journal of Sedimentary Research,80(1):67-96. [43] Shanmugam G,Moiola R J. 1988. Submarine fans: characteristics,models,classification,and reservoir potential. Earth Science Reviews, 24(6): 383-428. [44] Shultz M R,Fildani A,Cope T D,Graham S A. 2005. Deposition and stratigraphic architecture of an outcropping ancient slope system: Tres Pasos Formation,Magallanes Basin,southern Chile. Geological Society London Special Publications, 244(1): 27-50. [45] Stanbrook D A,Clark J D. 2004. The Marnes Brunes Inférieures in the Grand Coyer remnant: characteristics,structure and relationship to the Gresd'Annot. Geological Society London Special Publications, 221(1): 285-300. [46] Stephen D J,Stephen Ft,David H A,H. De V W. 2001. Anatomy,geometry and sequence stratigraphy of basin floor to slope turbidite systems,tanquakaroo,south Africa. Sedimentology,48(5): 987-1023. [47] Struss I,Brandes C,Wagonerdre C,Winsemann J. 2007. Lithofacies and depositional architecture of an upper fan channel complex,Punta Naranj of Nicaragua. Atlas of Deep-Water out-Crops: AAPG Studies in Geology 56,268-273. [48] Walker R G. 1975. Nested submarine-fan channels in the Capistrano Formation,San Clemente,California. Geological Society of America Bulletin, 86(7): 915-924. [49] Walker R G. 1985. Mudstones and thin-bedded turbidites associated with the upper cretaceous wheeler gorge conglomerates,california: a possible channel-levee complex. Journal of Sedimentary Research,55(2): 279-290. [50] Wynn R B,Cronin B T,Peakall J. 2007. Sinuous deep-water channels: Genesis,geometry and architecture. Marine and Petroleum Geology, 24(6-9): 341-387. [51] Yang T,Cao Y C,Liu K Y,Wang Y Z,Zavala C,Friis H,Song M S,Yuan G H,Liang C,Xi K L,Wang J. 2019. Genesis and depositional model of subaqueous sediment gravity-flow deposits in a lacustrine rift basin as exemplified by the Eocene Shahejie Formation in the Jiyang Depression,Eastern China. Marine and Petroleum Geology. 102: 231-257. [52] Zhao X,Qi K,Li L,Gong C,Mccaffrey W D. 2018. Development of a partially-avulsed submarine channel on the Niger Delta continental slope: architecture and controlling factors. Marine and Petroleum Geology, 95: 30-49.