Abstract Chemical weathering is a key process in source-to-sink depositional systems,which is controlled by climate,tectonics,topography,vegetation and lithology. Quantifying the intensity of silicate chemical weathering is beneficial to carry out global case study comparison. This paper aims to summarize the sediment chemical weathering indicators,including petrological and mineralogical,element geochemical and non-traditional stable isotope proxies,and point out the potential problems in application. Among these proxies,the composition of sandy sediment framework grains,mineral composition of silty sediments and textural characteristics of mineral surface can clearly indicate chemical weathering intensity,which have been overlooked in most studies and deserve more attention. Clay mineral assemblages and element geochemical indicators,such as CIA,Rb/Sr and αAlE,are most widely used for quantitative analysis of chemical weathering intensity. However,these proxies are easily affected by the sediment source and hydrodynamic sorting. The newly developed indexes of Li,B,K,Mg and Si isotopes show high potentials to evaluate chemical weathering intensity and need further study on their fractionation mechanism. It's important to note that all indicators can be affected by other geological processes from source to sink,e.g., source,hydrodynamic sorting,diagenesis,sediment recycling,pedogenesis,leaching and biological utilization. It is highly suggested to comprehensively use multiple indexes for evaluating silicate chemical weathering intensity,which can effectively improve the accuracy of the analytic results.
Fund:National Natural Science Foundation of China(Nos. 41806052,41902126),the Natural Science Foundation of Fujian Province(No.2017J05067)and the Xiamen University Fundamental Research Funds for the Central Universities(Nos. 20720190097,20720190103)
Corresponding Authors:
Jian Xing,born in 1987,is an associate professor in College of Ocean and Earth Sciences,Xiamen University. He is mainly engaged in teaching and research on sedimentary geology. E-mail: xjian@xmu.edu.cn.
About author: Fu Han-Jing,born in 1998,is a master degree candidate in College of Ocean and Earth Sciences,Xiamen University, and is mainly engaged in sedimentary geology. E-mail: 1434626361@qq.com.
Cite this article:
Fu Han-Jing,Jian Xing,Liang Hang-Hai. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity[J]. JOPC, 2021, 23(6): 1192-1209.
Fu Han-Jing,Jian Xing,Liang Hang-Hai. Research progress of sediment indicators and methods for evaluation of silicate chemical weathering intensity[J]. JOPC, 2021, 23(6): 1192-1209.
[1] 陈骏,王洪涛,鹿化煜. 1996. 陕西洛川黄土沉积物中稀土元素及其他微量元素的化学淋滤研究. 地质学报, 70(1): 61-72. [Chen J,Wang H T,Lu H Y.1996. Behaviours of REE and other trace elements during petrological weathering-evidence from chemical leaching of loess and paleosol from the Luochuan section in central China. Acta Geologica Sinica, 70(1): 61-72] [2] 方谦,洪汉烈,赵璐璐,程峰,殷科,王朝文. 2018. 风化成土过程中自生矿物的气候指示意义. 地球科学, 43(3): 753-769. [Fang Q,Hong H L,Zhao L L,Cheng F,Yin K,Wang C W.2018. Climatic implication of authigenic minerals formed during pedogenic weathering processes. Earth Science, 43(3): 753-769] [3] 冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用. 地学前缘,10(4): 539-544. [Feng L J,Chu X L,Zhang Q R,Zhang T G.2003. CIA(chemical index of alteration)and its applications in the Proterozoic clastic rocks. Earth Science Frontiers, 10(4): 539-544] [4] 郭望,张卫刚,李玉宏,雷迅,李永红,陈刚,张云鹏,陈磊,徐学敏. 2020. 柴北缘大煤沟组七段页岩地球化学特征: 对中侏罗世晚期物源及风化作用的指示及意义. 沉积学报, 38(3): 676-686. [Guo W,Zhang W G,Li Y H,Lei X,Li Y H,Chen G,Zhang Y P,Chen L,Xu X M.2020. Geochemistry of 7 member shale of the Dameigou Formation in the Northern Qaidam Basin,China: significance and implication for provenance and source weathering in the Late Middle Jurassic. Acta Sedimentologica Sinica, 38(3): 676-686] [5] 解晨骥,高全洲,陶贞. 2012. 流域化学风化与河流水化学研究综述与展望. 热带地理, 32(4): 331-337. [Xie C J,Gao Q Z,Tao Z.2012. Review and perspectives of the study on chemical weathering and hydrochemistry in river basin. Tropical Geography, 32(4): 331-337] [6] 靳华龙,万世明,张晋,宋泽华,赵德博,黄杰,于兆杰,李安春. 2019. 北部湾表层黏土矿物分布特征及物源研究. 海洋科学, 43(1): 75-84. [Jin H L,Wan S M,Zhang J,Song Z H,Zhao D B,Huang J,Yu Z J,Li A C.2019. Distribution and provenance of clay minerals in surface sediments of the Beibu Gulf,the South China Sea. Marine Sciences, 43(1): 75-84] [7] 李徐生,韩志勇,杨守业,陈英勇,王永波,杨达源. 2007. 镇江下蜀土剖面的化学风化强度与元素迁移特征. 地理学报, 62(11): 1174-1184. [Li X S,Han Z Y,Yang S Y,Chen Y Y,Wang Y B,Yang D Y.2007. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang. Acta Geographica Sinica, 62(11): 1174-1184] [8] 李银川,董戈,雷昉,魏海珍. 2020. 硼同位素分馏的实验理论认识和矿床地球化学研究进展. 地学前缘, 27(3): 14-28. [Li Y C,Dong G,Lei F,Wei H Z.2020. Experimental and theoretical understanding of boron isotope fractionation and advances in ore deposit geochemistry study. Earth Science Frontiers, 27(3): 14-28] [9] 林春明,张霞,赵雪培,李鑫,黄舒雅,江凯禧. 2021. 沉积岩石学的室内研究方法综述. 古地理学报, 23(2): 223-244. [Lin C M,Zhang X,Zhao X P,Li X,Huang S Y,Jiang K X.2021. Review of laboratory research methods for sedimentary petrology. Journal of Palaeogeography(Chinese Edition), 23(2): 223-244] [10] 刘金科,韩贵琳. 2019. 镁同位素在森林生态系统研究中的应用. 生态学杂志, 38(3): 899-907. [Liu J K,Han G L.2019. Research advances about magnesium isotope in forest ecosystems. Chinese Journal of Ecology, 38(3): 899-907] [11] 邵菁清,杨守业. 2012. 化学蚀变指数(CIA)反映长江流域的硅酸盐岩化学风化与季风气候. 科学通报, 57(11): 933-942. [Shao J Q,Yang S Y.2012. Does chemical index of alteration(CIA)reflect silicate weathering and monsoonal climate in the Changjiang River basin. Chinese Science Bulletin, 57(11): 933-942] [12] 孙明照,瞿书逸,李来峰,李乐,吴卫华. 2018. 岩性对化学风化的影响: 来自亚热带气候条件下花岗岩和安山岩的对比. 地球科学与环境学报, 40(5): 627-636. [Sun M Z,Qu S Y,Li L F,Li L,Wu W H.2018. Effects of lithology on chemical weathering: comparison of granite and andesite in subtropical climate. Journal of Earth Sciences and Environment. 40(5): 627-636] [13] 汤艳杰,贾建业,谢先德. 2002. 黏土矿物的环境意义. 地学前缘, 9(2): 337-344. [Tang Y J,Jia J Y,Xie X D.2002. Environment significance of clay minerals. Earth Science Frontiers, 9(2): 337-344] [14] 王昆,李伟强,李石磊. 2020. 钾稳定同位素研究综述. 地学前缘, 27(3): 104-122. [Wang K,Li W Q,Li S L.2020. Stable potassium isotope geochemistry and cosmochemistry. Earth Science Frontiers, 27(3): 104-122] [15] 肖军,贺茂勇,肖应凯,金章东. 2012. 硼同位素地球化学应用研究进展. 海洋地质前沿, 28(9): 20-33. [Xiao J,He M Y,Xiao Y K,Jin Z D.2012. Progress of geochemical application of boron isotope. Marine Geology Frontier, 28(9): 20-33] [16] 徐小涛,邵龙义. 2018. 利用泥质岩化学蚀变指数分析物源区风化程度时的限制因素. 古地理学报, 20(3): 515-522. [Xu X T,Shao L Y.2018. Limiting factors in utilization of chemical index of alterationof mudstones to quantify the degree of weathering in provenance. Journal of Palaeogeography(Chinese Edition), 20(3): 515-522] [17] 徐亚军,杜远生,杨江海. 2007. 沉积物物源分析研究进展. 地质科技情报, 26(3): 26-32. [Xu Y J,Du Y S,Yang J H.2007. Prospects of sediment provenance analysis. Geological Science and Technology Information, 26(3): 26-32] [18] 闫雅妮,张伟,张俊文,任亚雄,赵志琦. 2021. 大陆硅酸盐岩石风化过程中镁同位素地球化学研究进展. 地球科学进展, 36(3): 325-334. [Yan Y N,Zhang W,Zhang J W,Ren Y X,Zhao Z Q.2021. Advances in magnesium isotope geochemistry during weathering of continental silicate rocks. Advances in Earth Science, 36(3): 325-334] [19] 杨江海,马严. 2017. 源-汇沉积过程的深时古气候意义. 地球科学, 42(11): 64-75. [Yang J H,Ma Y.2017. Paleoclimate perspectives of source-to-sink sedimentary processes. Earth Science, 42(11): 64-75] [20] 杨作升,赵晓辉,乔淑卿,李云海,范德江. 2008. 长江和黄河入海沉积物不同粒级中长石/石英比值及化学风化程度评价. 中国海洋大学学报(自然科学版), 38(2): 244-250. [Yang Z S,Zhao X H,Qiao S Q,Li Y H,Fan D J.2008. Feldspar/Quartz(F/Q)ratios as a chemical weathering intensity indicator in different grain size-fractions of sediments from the Changjiang and Huanghe Rivers to the seas. Periodical of Ocean University of China, 38(2): 244-250] [21] 曾蒙秀,宋友桂,安芷生,常宏,李越. 2014. 青海湖二郎剑钻孔的黏土矿物学研究. 中国科学: 地球科学, 44(6): 1298-1311. [Zeng M X,Song Y G,An Z S,Chang H,Li Y.2014. Clay mineral records of the Erlangjian drill core sediments from the Lake Qinghai Basin,China. Science China: Earth Sciences, 44(6): 1298-1311] [22] 赵志琦,刘丛强,肖应凯,郎赟超. 2002. 黄土风化过程的硼同位素地球化学研究. 中国科学(D辑: 地球科学), 32(6): 507-513. [Zhao Z Q,Liu C Q,Xiao Y K,Lang Y C.2002. Study on boron isotope geochemistry of weathering process of loess. Science in China: Series D, 32(6): 507-513] [23] Alizai A,Hillier S,Clift P D,Giosan L,Hurst A,WagonerLaningham S,Macklin M.2012. Clay mineral variations in Holocene terrestrial sediments from the Indus Basin. Quaternary Research, 77(3): 368-381. [24] Amireh B S.2020. Weathering,recycling,hydraulic sorting and metamorphism/metasomatism implications of the NE Gondwana lower Cambrian-Lower Cretaceous siliciclastic succession of Jordan. Journal of Asian Earth Sciences, 191: 104228. [25] Andò S,Garzanti E,Padoan M,Limonta M.2012. Corrosion of heavy minerals during weathering and diagenesis: a catalog for optical analysis. Sedimentary Geology, 280: 165-178. [26] Babechuk M G,Widdowson M,Kamber B S.2014. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles,Deccan Traps,India. Chemical Geology, 363: 56-75. [27] Baronas J J,West A J,Burton K W,Hammond D E,Opfergelt S,Pogge von Strandmann P A,James R H,Rouxel O J.2020. Ge and Si isotope behavior during intense tropical weathering and ecosystem cycling. Global Biogeochemical Cycles, 34(8): e2019GB006522. [28] Bayon G,Delvigne C,Ponzevera E,Borges A V,Darchambeau F,De Deckker P,Lambert T,Monin L,Toucanne S,André L.2018. The silicon isotopic composition of fine-grained river sediments and its relation to climate and lithology. Geochimica et Cosmochimica Acta, 229: 147-161. [29] Berner R A.1997. The rise of plants and their effect on weathering and atmospheric CO2. Science, 276(5312): 544-546. [30] Brewer A,Teng F Z,Dethier D.2018. Magnesium isotope fractionation during granite weathering. Chemical Geology, 501: 95-103. [31] Buggle B,Glaser B,Hambach U,Gerasimenko N,Marković S.2011. An evaluation of geochemical weathering indices in loess-paleosol studies. Quaternary International, 240(1-2): 12-21. [32] Carpentier M,Weis D,Chauvel C.2013. Large U loss during weathering of upper continental crust: the sedimentary record. Chemical Geology, 340: 91-104. [33] Chamley H.1989. Estuaries and Deltas//Clay Sedimentology. Berlin,Heidelberg:Springer, 97-116. [34] Chen H,Liu X M,Wang K.2020a. Potassium isotope fractionation during chemical weathering of basalts. Earth and Planetary Science Letters, 539: 116192. [35] Chen X Y,Teng F Z,Huang K J,Algeo T J.2020b. Intensified chemical weathering during Early Triassic revealed by magnesium isotopes. Geochimica et Cosmochimica Acta, 287: 263-276. [36] Chesworth W.1973. The parent rock effect in the genesis of soil. Geoderma, 10(3): 215-225. [37] Cividini D,Lemarchand D,Chabaux F,Boutin R,Pierret M C.2010. From biological to lithological control of the B geochemical cycle in a forest watershed(Strengbach,Vosges). Geochimica et Cosmochimica Acta, 74(11): 3143-3163. [38] Clift P D,Wan S,Blusztajn J.2014. Reconstructing chemical weathering,physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews, 130: 86-102. [39] Colman S M.1982. Chemical weathering of basalts and andesites:evidence from weathering rinds. Washington: United States Geological Survey Paper, 1246: 55. [40] Cox R,Lowe D R,Cullers R L.1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta, 59(14): 2919-2940. [41] Deconinck J F,Hesselbo S P,Debuisser N,Averbuch O,Baudin F,Bessa J.2003. Environmental controls on clay mineralogy of an Early Jurassic mudrock(Blue Lias Formation,southern England). International Journal of Earth Sciences, 92(2): 255-266. [42] Dellinger M,Bouchez J,Gaillardet J,Faure L,Moureau J.2017. Tracing weathering regimes using the lithium isotope composition of detrital sediments. Geology, 45(5): 411-414. [43] Ding T P,Gao J F,Tian S H,Wang H B,Li M.2011. Silicon isotopic composition of dissolved silicon and suspended particulate matter in the Yellow River,China,with implications for the global silicon cycle. Geochimica et Cosmochimica Acta, 75(21): 6672-6689. [44] Dinis P A,Garzanti E,Hahn A,Vermeesch P,Cabral-Pinto M.2020. Weathering indices as climate proxies: a step forward based on Congo and SW African river muds. Earth-Science Reviews, 201: 103039. [45] Dixon J L,Hartshorn A S,Heimsath A M,DiBiase R A,Whipple K X.2012. Chemical weathering response to tectonic forcing: a soils perspective from the San Gabriel Mountains,California. Earth and Planetary Science Letters, 323: 40-49. [46] Duzgoren-Aydin N S,Aydin A,Malpas J.2002. Re-assessment of chemical weathering indices: case study on pyroclastic rocks of Hong Kong. Engineering Geology, 63(1-2): 99-119. [47] Ehrmann W.1998. Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound(Ross Sea,Antarctica)on paleoclimate and ice dynamics. Palaeogeography,Palaeoclimatology,Palaeoecology, 139(3-4): 213-231. [48] Ercolani C,Lemarchand D,Dosseto A.2019. Insights on catchment-wide weathering regimes from boron isotopes in riverine material. Geochimica et Cosmochimica Acta, 261: 35-55. [49] Esquevin J.1969. Influence de la composition chimique des illites sur leurcristallinité. Bulletin du Centre de Recherches de Pau-S.N.P.A., 3(1): 147-153. [50] Fedo C M,Wayne Nesbitt H,Young G M.1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols,with implications for paleoweathering conditions and provenance. Geology, 23(10): 921-924. [51] Gabet E J,Mudd S M.2009. A theoretical model coupling chemical weathering rates with denudation rates. The Geological Society of America, 37(2): 151-154. [52] Gaillardet J,Dupré B,Allègre C J.1999. Geochemistry of large river suspended sediments: silicate weathering or recycling tracer? Geochimica et Cosmochimica Acta, 63(23-24): 4037-4051. [53] Galán E,Ferrell R E.2013. Genesis of clay minerals. In: Faïza B, Gerhard L (eds). Developments in Clay Science. Elsevier: 83-126. [54] Garzanti E,Padoan M,Andò S,Resentini A,Vezzoli G,Lustrino M.2013a. Weathering and relative durability of detrital minerals in equatorial climate: sand petrology and geochemistry in the East African Rift. The Journal of Geology, 121(6): 547-580. [55] Garzanti E,Padoan M,Setti M,López-Galindo A,Villa I M.2014. Provenance versus weathering control on the composition of tropical river mud(southern Africa). Chemical Geology, 366: 61-74. [56] Garzanti E,Padoan M,Setti M,Najman Y,Peruta L,Villa I M.2013b. Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochemistry,Geophysics,Geosystems, 14(2): 292-316. [57] Garzanti E,Resentini A.2016. Provenance control on chemical indices of weathering(Taiwan river sands). Sedimentary Geology, 336: 81-95. [58] Greber N D,Dauphas N.2019. The chemistry of fine-grained terrigenous sediments reveals a chemically evolved Paleoarchean emerged crust. Geochimica et Cosmochimica Acta, 255: 247-264. [59] Gu X X,Liu J M,Zheng M H,Tang J X,Qi L.2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan,South China: geochemical evidence. Journal of Sedimentary Research, 72(3): 393-407. [60] Guo Y,Yang S,Su N, Li C, Yin P, Wang Z B.2018. Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochimica et Cosmochimica Acta, 227: 48-63. [61] Gupta A S,Rao S K.2001. Weathering indices and their applicability for crystalline rocks. Bulletin of Engineering Geology and the Environment, 60(3): 201-221. [62] Harnois L.1988. The CIW index: a new chemical index of weathering. Sedimentary Geology, 55(3): 319-322. [63] Harrassowitz H L F.1926. Laterit. Berlin: Gebrüder Borntraeger. [64] Hatano N,Yoshida K,Sasao E.2019. Effects of grain size on the chemical weathering index: a case study of Neogene fluvial sediments in southwest Japan. Sedimentary Geology, 386: 1-8. [65] Hessler A M,Lowe D R.2017. Initial generation of sand across climate zones of the Mojave,Sierra Nevada,and Klamath Batholiths in California,USA. Sedimentary Geology, 348: 37-50. [66] Hessler A M,Zhang J,Covault J,Ambrose W.2017. Continental weathering coupled to Paleogene climate changes in North America. Geology, 45(10): 911-914. [67] Hossain H M Z,Kawahata H,Roser B P,Sampei Y,Manaka T,Otani S.2017. Geochemical characteristics of modern river sediments in Myanmar and Thailand: implications for provenance and weathering. Geochemistry, 77(3): 443-458. [68] Hu Y,Teng F Z,Plank T,Huang K J.2017. Magnesium isotopic composition of subducting marine sediments. Chemical Geology, 466: 15-31. [69] Huang K J,Teng F Z,Shen B,Xiao S,Lang X,Ma H R,Fu Y,Peng Y.2016. Episode of intense chemical weathering during the termination of the 63<inline-formula><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="Mml4-1671-1505-23-6-1192"><mml:msup><mml:mrow><mml:mn>5</mml:mn></mml:mrow><mml:mrow/></mml:msup></mml:math></inline-formula>Ma Marinoan glaciation. Proceedings of the National Academy of Sciences, 113(52): 14904-14909. [70] Huang T Y,Teng F Z,Rudnick R L,Chen X Y,Hu Y,Liu Y S,Wu F Y.2020. Heterogeneous potassium isotopic composition of the upper continental crust. Geochimica et Cosmochimica Acta, 278: 122-136. [71] Hughes H J,Sondag F,Santos R V,André L,Cardinal D.2013. The riverine silicon isotope composition of the Amazon Basin. Geochimica et Cosmochimica Acta, 121: 637-651. [72] Jayawardena U S,Izawa E.1994. A new chemical index of weathering for metamorphic silicate rocks in tropical regions: a study from Sri Lanka. Engineering Geology, 36(3-4): 303-310. [73] Jenny H.1941. Factors of soil formation: a system of quantitative petrology. Soil Science, 42(5): 415. [74] Jian X,Guan P,Zhang W,Feng F.2013. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin,northeastern Tibetan Plateau: implications for provenance and weathering. Chemical Geology, 360: 74-88. [75] Jin Z,Wang S,Shen J,Zhang E,Li F,Ji J,Lu X.2001. Chemical weathering since the Little Ice Age recorded in lake sediments: a high-resolution proxy of past climate. Earth Surface Processes and Landforms, 26(7): 775-782. [76] Kamp P C.2010. Arkose,subarkose,quartz sand,and associated muds derived from felsic plutonic rocks in glacial to tropical humid climates. Journal of Sedimentary Research, 80(10): 895-918. [77] Kump L R,Brantley S L,Arthur M A.2000. Chemical weathering,atmospheric CO2,and climate. Annual Review of Earth and Planetary Sciences, 28(1): 611-667. [78] Lemarchand D,Cividini D,Turpault M P,Chabaux F.2012. Boron isotopes in different grain size fractions: exploring past and present water-rock interactions from two soil profiles(Strengbach,Vosges Mountains). Geochimica et Cosmochimica Acta, 98: 78-93. [79] Li C S,Shi X F,Kao S J,Chen M T,Liu Y G,Fang X S,Lü H H,Zou J J,Liu S F,Qiao S Q.2012. Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers. Chinese Science Bulletin, 57(6): 673-681. [80] Li L L,Guo Z J,Guan S W,Zhou S,Wang M,Fang Y,Zhang C.2015a. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin. Science China Earth Sciences, 58(6): 859-875. [81] Li S,Gaschnig R M,Rudnick R L.2015b. Insights into chemical weathering of the upper continental crust from the geochemistry of ancient glacial diamictites. Geochimica et Cosmochimica Acta, 176: 96-117. [82] Li S,Li W,Beard B L,Raymo M E,Wang X,Chen Y,Chen J.2019a. K isotopes as a tracer for continental weathering and geological K cycling. Proceedings of the National Academy of Sciences, 116(18): 8740-8745. [83] Li W,Beard B L,Li S.2016. Precise measurement of stable potassium isotope ratios using a single focusing collision cell multi-collector ICP-MS. Journal of Analytical Atomic Spectrometry, 31:1023-1029. [84] Li W,Li S,Beard B L.2019b. Geological cycling of potassium and the K isotopic response: insights from loess and shales. Acta Geochimica, 38(4): 508-516. [85] Li W,Liu X M.2020. Experimental investigation of lithium isotope fractionation during kaolinite adsorption: implications for chemical weathering. Geochimica et Cosmochimica Acta, 284: 156-172. [86] Liang L,Sun Y,Beets C J,Prins M A,Wu F,Wagonerdenberghe J.2013. Impacts of grain size sorting and chemical weathering on the geochemistry of Jingyuan loess in the northwestern Chinese Loess Plateau. Journal of Asian Earth Sciences, 69: 177-184. [87] Liu X M,Teng F Z,Rudnick R L,McDonough W F,Cummings M L.2014. Massive magnesium depletion and isotope fractionation in weathered basalts. Geochimica et Cosmochimica Acta, 135: 336-349. [88] Liu Z,Colin C,Trentesaux A,Siani G,Frank N,Blamart D,Farid S.2005. Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin. Quaternary Research, 63(3): 316-328. [89] Liu Z,Colin C,Li X,Zhao Y,Tuo S,Chen Z,Siringan F P,Liu J T,Huang C Y,You C F,Huang K F.2010. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: source and transport. Marine Geology, 277(1-4): 48-60. [90] Louvat P,Gaillardet J,Paris G,Dessert C.2011. Boron isotope ratios of surface waters in Guadeloupe,Lesser Antilles. Applied Geochemistry, 26: S76-S79. [91] Ma L,Teng F Z,Jin L,Ke S,Yang W,Gu H O,Brantley S L.2015. Magnesium isotope fractionation during shale weathering in the Shale Hills Critical Zone Observatory: accumulation of light Mg isotopes in soils by clay mineral transformation. Chemical Geology, 397: 37-50. [92] Maher K,Chamberlain C P.2014. Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343(6178): 1502-1504. [93] McLennan S M.1993. Weathering and global denudation. The Journal of Geology, 101(2): 295-303. [94] McLennan S M,Hemming S R,Taylor S R,Eriksson K A.1995. Early Proterozoic crustal evolution: geochemical and NdPb isotopic evidence from meta sedimentary rocks,southwestern North America. Geochimica et Cosmochimica Acta, 59(6): 1153-1177. [95] Mei H W,Jian X,Zhang W,Fu H J,Zhang S.2021. Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: implications for chemical weathering intensity evaluation. CATENA, 203: 105368. [96] Millot R,Tremosa J,Négrel P.2019. Chemical weathering of a granitic watershed: coupling Lithium isotopes and reactive transport modeling,preliminary results//E3S Web of Conferences 98. France: EDP Sciences,WRI-16: 1-4. [97] Millot R,Vigier N,Gaillardet J.2010. Behaviour of lithium and its isotopes during weathering in the Mackenzie Basin,Canada. Geochimica et Cosmochimica Acta, 74(14): 3897-3912. [98] Miriyala P,Sukumaran N P,Nath B N,Ramamurty P B,Sijinkumar A V,Vijayagopal B,Ramaswamy V,Sebastian T.2017. Increased chemical weathering during the deglacial to mid-Holocene summer monsoon intensification. Scientific Reports, 7(1): 1-11. [99] Muttik N,Kirsimäe K,Newsom H E,Williams L B.2011. Boron isotope composition of secondary smectite in suevites at the Ries crater,Germany: boron fractionation in weathering and hydrothermal processes. Earth and Planetary Science Letters, 310(3-4): 244-251. [100] Nesbitt H W,Young G M.1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715-717. [101] Nesbitt H W,Young G M.1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta, 48(7): 1523-1534. [102] Nesbitt H W,Young G M,McLennan S M,Keays R R.1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments,with implications for provenance studies. The Journal of Geology, 104(5): 525-542. [103] Nesbitt H W,Markovics G.1997. Weathering of granodioritic crust,long-term storage of elements in weathering profiles,and petrogenesis of siliciclastic sediments. Geochimica et Cosmochimica Acta, 61(8): 1653-1670. [104] Noireaux J,Sullivan P L,Gaillardet J,Louvat P,Steinhoefel G,Brantley S L.2021. Developing boron isotopes to elucidate shale weathering in the critical zone. Chemical Geology, 559: 119900. [105] Oliva P,Viers J,Dupré B.2003. Chemical weathering in granitic environments. Chemical Geology, 202(3-4): 225-256. [106] Opfergelt S,Georg R B,Delvaux B,Cabidoche Y M,Burton K W,Halliday A N.2012. Mechanisms of magnesium isotope fractionation in volcanic soil weathering sequences,Guadeloupe. Earth and Planetary Science Letters, 341: 176-185. [107] Opfergelt S,Delmelle P.2012. Silicon isotopes and continental weathering processes: assessing controls on Si transfer to the ocean. Comptes Rendus Geoscience, 344(11-12): 723-738. [108] Pang H,Pan B,Garzanti E,Gao H,Zhao X,Chen D.2018. Mineralogy and geochemistry of modern Yellow River sediments: implications for weathering and provenance. Chemical Geology, 488: 76-86. [109] Parker A.1970. An index of weathering for silicate rocks. Geological Magazine, 107(6): 501-504. [110] Perri F.2018. Reconstructing chemical weathering during the Lower Mesozoic in the Western-Central Mediterranean area: a review of geochemical proxies. Geological Magazine, 155(4): 944-954. [111] Pistiner J S,Henderson G M.2003. Lithium-isotope fractionation during continental weathering processes. Earth and Planetary Science Letters, 214(1-2): 327-339. [112] Price J R,Velbel M A.2003. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202(3-4): 397-416. [113] Reiche P.1943. Graphic representation of chemical weathering. Journal of Sedimentary Research, 13(2): 58-68. [114] Riebe C S,Kirchner J W,Finkel R C.2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes. Earth and Planetary Science Letters, 224(3-4): 547-562. [115] Riebe C S,Hahm W J,Brantley S L.2017. Controls on deep critical zone architecture: a historical review and four testable hypotheses. Earth Surface Processes and Landforms, 42(1): 128-156. [116] Rieu R,Allen P A,Plooötze M,Pettke T.2007a. Climatic cycles during a Neoproterozoic “snowball”glacial epoch. Geology, 35(4): 299-302. [117] Rieu R,Allen P A,Plotze M,Pettke T.2007b. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession,Mirbat area,south Oman: implications for paleoweathering conditions. Precambrian Research, 154(3-4): 248-265. [118] Rocha-Filho P,Antunes F S,Falcao M F G.1985. Quantitative influence of the weathering degree upon the mechanical properties of a young gneiss residual soil. Proceedinfs of the 1st International Conference on Geomechanics in Tropical Lateritic and Saprolitic Soils. Brasilia. Publ. 1: 281-294. [119] Romer R L,Meixner A,Hahne K.2014. Lithium and boron isotopic composition of sedimentary rocks—The role of source history and depositional environment: a 250Ma record from the Cadomian orogeny to the Variscan orogeny. Gondwana Research, 26(3-4): 1093-1110. [120] Roy D K,Roser B P.2013. Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir basin,Bangladesh. Gondwana Research, 23(3): 1163-1171. [121] Rudnick R L,Gao S.2014. Composition of the continental crust. In: Holland H D,Turekian K K(eds). Treatise on Geochemistry(Second Edition). Oxford: Elsevier,1-51. [122] Ruxton B P.1968. Measures of the degree of chemical weathering of rocks. The Journal of Geology, 76(5): 518-527. [123] Santiago Ramos D P,Morgan L E,Lloyd N S,Higgins J A.2018. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: insights from the K isotopic composition(41K/39K)of deep-sea pore-fluids. Geochimica et Cosmochimica Acta, 236: 99-120. [124] Shao J Q,Yang S Y.2012. Does chemical index of alteration(CIA)reflect silicate weathering and monsoonal climate in the Changjiang River basin? Chinese Science Bulletin, 57(10): 1178-1187. [125] Song Y,Wang Q,An Z,Qiang X,Dong J,Chang H,Zhang M,Guo X.2018. Mid-Miocene climatic optimum: clay mineral evidence from the red clay succession,Longzhong Basin,Northern China. Palaeogeography,Palaeoclimatology,Palaeoecology, 512: 46-55. [126] Su N,Yang S,Guo Y,Yue W,Wang X,Yin P,Huang X.2017. Revisit of rare earth element fractionation during chemical weathering and river sediment transport. Geochemistry,Geophysics,Geosystems, 18(3): 935-955. [127] Tanaka K,Watanabe N.2015. Size distribution of alkali elements in riverbed sediment and its relevance to fractionation of alkali elements during chemical weathering. Chemical Geology, 411: 12-18. [128] Teng F Z,Hu Y,Ma J L,Wei G J,Rudnick R L.2020. Potassium isotope fractionation during continental weathering and implications for global K isotopic balance. Geochimica et Cosmochimica Acta, 278: 261-271. [129] Velbel M A.2007. Surface textures and dissolution processes of heavy minerals in the sedimentary cycle: examples from pyroxenes and amphiboles. Developments in Sedimentology, 58: 113-150. [130] Velbel M A,Losiak A I.2010. Denticles on chain silicate grain surfaces and their utility as indicators of weathering conditions on Earth and Mars. Journal of Sedimentary Research, 80(9): 771-780. [131] Vogel D E.1975. Precambrian weathering in acid metavolcanic rocks from the Superior Province,Villebon Township,South-central Quebec. Canadian Journal of Earth Sciences, 12(12): 2080-2085. [132] Vogt T.1927. Sulitjelma feltets geologi og petrografi. Norges Geologiske Undersokelse, 121: 1-560(in Norwegian,with English abstract). [133] Wang Q,Yang S.2013. Clay mineralogy indicates the Holocene monsoon climate in the Changjiang(Yangtze River)Catchment,China. Applied Clay Science, 74: 28-36. [134] Wei G,Li X H,Liu Y,Shao L,Liang X.2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21(4): 1-11. [135] Wei H Z,Lei F,Jiang S Y,Lu H Y,Xiao Y K,Zhang H Z,Sun X F.2015. Implication of boron isotope geochemistry for the pedogenic environments in loess and paleosol sequences of central China. Quaternary Research, 83(1): 243-255. [136] Weynell M,Wiechert U,Schuessler J A.2017. Lithium isotopes and implications on chemical weathering in the catchment of Lake Donggi Cona,northeastern Tibetan Plateau. Geochimica et Cosmochimica Acta, 213: 155-177. [137] Weynell M,Wiechert U,Schuessler J A.2021. Lithium isotope signatures of weathering in the hyper-arid climate of the western Tibetan Plateau. Geochimica et Cosmochimica Acta, 293: 205-223. [138] White A F,Buss H L.2014.7. 4-Natural weathering rates of silicate minerals(Second Edition). Treatise on Geochemistry, 7(4): 115-155. [139] Williams L B,Hervig R L,Wieser M E,Hutcheon Ⅰ.2001. The influence of organic matter on the boron isotope geochemistry of the gulf coast sedimentary basin,USA. Chemical Geology, 174(4): 445-461. [140] Wimpenny J,Yin Q Z,Tollstrup D,Xie L W,Sun J.2014. Using Mg isotope ratios to trace Cenozoic weathering changes: a case study from the Chinese Loess Plateau. Chemical Geology, 376: 31-43. [141] Xiong S,Ding Z,Zhu Y,Zhou R,Lu H.2010. A~6 Ma chemical weathering history,the grain size dependence of chemical weathering intensity,and its implications for provenance change of the Chinese loess-red clay deposit. Quaternary Science Reviews, 29(15-16): 1911-1922. [142] Yan Y,Xia B,Lin G,Cui X,Hu X,Yan P,Zhang F.2007. Geochemistry of the sedimentary rocks from the Nanxiong Basin,South China and implications for provenance,paleoenvironment and paleoclimate at the K/T boundary. Sedimentary Geology, 197(1-2): 127-140. [143] Yue W,Yue X,Panwar S,Zhang L,Jin B.2019. The chemical composition and surface texture of transparent heavy minerals from Core LQ24 in the Changjiang Delta. Minerals, 9(7): 454. [144] Zakharova E A,Pokrovsky O S,Dupré B,Gaillardet J,Efimova L E.2007. Chemical weathering of silicate rocks in Karelia region and Kola peninsula,NW Russia: assessing the effect of rock composition,wetlands and vegetation. Chemical Geology, 242(1-2): 255-277. [145] Zeng H,Rozsa V,Nie N X,Zhang Z,Pham T A,Galli G,Dauphas N.2019. Ab Initio calculation of equilibrium isotopic fractionations of potassium and rubidium in minerals and water. ACS Earth and Space Chemistry, 3(11): 2601-2612. [146] Zhang J W,Zhao Z Q,Li X D,Yan Y N,Lang Y C,Ding H,Cui L F,Meng J L,Liu C Q.2021. Extremely enrichment of 7Li in highly weathered saprolites developed on granite from Huizhou,southern China. Applied Geochemistry, 125: 104825.