1 Shenzhen Branch of CNOOC China Ltd.,Guangdong Shenzhen 518054,China; 2 CNOOC Deepwater Development Ltd.,Guangdong Shenzhen 518054,China; 3 State Key Laboratory of Marine Geology,Tongji University,Shanghai 200092,China
Abstract The Oligocene Zhuhai Formation is one of the main reservoirs in the Pearl River Mouth Basin(PRMB), northern South China Sea. However,the key issues such as the provenance location and sediment transport path are still controversial. Zircon fission track(ZFT)and apatite fission track(AFT)thermochronology are carried out for sandstone samples from the upper Zhuhai Formation of three key wells in different structural units of PRMB to analyze the provenances of Zhuhai Formation. The ZFT and AFT age components of Well XJ28 in Xijiang sag are similar to those of Well LW3 in Baiyun sag,and include the ZFT age components of Late Triassic. Furthermore, the main age components of ZFT and AFT are Cretaceous and Paleocene respectively. In contrast,the ZFT and AFT age components of Well LF7 are obviously younger than those of the first two wells and the main ZFT age component of Well LF7 is Paleocene. The ZFT and AFT age components of those three wells indicate the provenance of the upper Zhuhai Formation is mainly from the South China block in the north of PRMB,but there are obvious provenance differences between the western and the eastern of the basin. The provenance characteristics of Wells XJ28 and LW3 in the western basin are generally consistent,both of which are supplied by the ancient Zhujiang River water system. The provenance is mainly the Mesozoic granite in the ancient Zhujiang River drainage area,and also includes the Mesozoic sedimentary basin in the hinterland of South China block. The provenance of Well LF7 in the eastern basin is mainly the coastal Mesozoic granite in the north of Lufeng sag. The provenance composition is relatively simple and the sediment transport distance is relatively short.
Fund:Co-funded by the National Science and Technology Major Project of China(No. 2016ZX05026-003)and the Major Science and Technology Project of CNOOC in the 13th Five-Year Plan(No.CNOOC-KJ135ZDXM37SZ01SHENHAI)
About author: Zhang Qing-Lin,born in 1981,Ph.D., is an engineer of Shenzhen Branch of CNOOC Ltd. He is mainly engaged in petroleum geology research and exploration work.E-mail: zhangql7@cnooc.com.cn
Cite this article:
Zhang Qing-Lin,Zhang Xiang-Tao,Xu Chang-Hai et al. Application of fission track thermochronology in provenance analysis of the Oligocene Zhuhai Formation in Pearl River Mouth Basin[J]. JOPC, 2022, 24(1): 129-138.
Zhang Qing-Lin,Zhang Xiang-Tao,Xu Chang-Hai et al. Application of fission track thermochronology in provenance analysis of the Oligocene Zhuhai Formation in Pearl River Mouth Basin[J]. JOPC, 2022, 24(1): 129-138.
[1]焦鹏,郭建华,王玺凯,刘辰生,郭祥伟. 2018. 珠江口盆地韩江—陆丰凹陷珠江组下段碎屑锆石来源与储层物源示踪. 石油与天然气地质,39(2): 239-253. [Jiao P,Guo J H,Wang X K,Liu C S,Guo X W.2018. Detrital zircon genesis and provenance tracing for reservoirs in the Lower Zhujiang Formation in Hanjiang-Lufeng Sag,Pearl River Mouth Basin. Oil & Gas Geology,39(2): 239-253] [2]兰青. 2015. 南海扩张及华南沿海地貌和系演化: 来自台湾新生代地层记录. 中国科学院大学博士学位论文. [Lan Q. 2015. Tectonics,topography,and river system transition in Southeast China: insights from the sedimentary record in Taiwan. Doctoral dissertation of the University of Chinese Academy of Sciences] [3]李庶波,王岳军,吴世敏. 2018. 珠江口盆地中—新生代热隆升格局的磷灰石和锆石裂变径迹反演. 地学前缘,25(1): 95-107. [Li S B,Wang Y J,Wu S M.2018. Meso-Cenozoic tectonothermal pattern of the Pearl River Mouth Basin: constraints from zircon and apatite fission track data. Earth Science Frontiers,25(1): 95-107] [4]李云,郑荣才,高博禹,胡晓庆,戴朝成. 2011. 珠江口盆地白云凹陷渐新世/中新世地质事件的碎屑组分响应. 现代地质,25(3): 476-481. [Li Y,Zheng R C,Gao B Y,Hu X Q,Dai Z C.2011. Characteristics of the detrital response to Oligocene/Miocene Geological events in Baiyun Sag,Pearl River Mouth Basin. Geoscience,25(3): 476-481] [5]李云,郑荣才,杨宝泉,朱国金,胡晓庆. 2013. 珠江口盆地白云凹陷中新统珠江组物源及其研究意义. 地质论评,59(1): 41-51. [Li Y,Zheng R C,Yang B Q,Zhu G J,Hu X Q.2013. Provenance and its geological implications of Miocene Zhujiang Formation in Baiyun Sag,Pearl River Mouth Basin. Geological Review,59(1): 41-51] [6]李振华,陈刚,丁超,杨甫,毛小妮,薛中天,吴奋超,苏海. 2012. 碎屑颗粒裂变径迹热年代学在沉积物源区剥露历史分析中的应用. 地质科技情报,31(2): 19-26. [Li Z H,Chen G,Ding C,Yang F,Mao X N,Xue Z T,Wu F C,Su H.2012. Application of detrital grain thermochronology on the exhumation history of the source areas. Geological Science and Technology Information,31(2): 19-26] [7]庞雄,陈长民,吴梦霜,何敏,吴湘杰. 2006. 珠江深水扇与周边重要地质事件. 地球科学进展,21(8): 7-14. [Pang X,Chen C M,Wu M S,He M,Wu X J.2006. The Pearl River deep-water fan systems and significant geological events. Advances in Earth Science,21(8): 7-14] [8]邵磊,李献华,汪品先,翦知湣,韦刚健,庞雄,刘颖. 2004. 南海渐新世以来构造演化的沉积记录: ODP1148 站深海沉积物中的证据. 地球科学进展,19(4): 539-544. [Shao L,Li X H,Wang P X,Jian Z M,Wei G J,Pang X,Liu Y.2004. Sedimentary record of the tectonic evolution of the South China Sea since the Oligocene evidence from deep sea sediments of ODP Site 1148. Advances in Earth Science,19(4): 539-544] [9]邵磊,庞雄,陈长民,施和生,李前裕,乔培军. 2007. 南海北部渐新世末沉积环境及物源突变事件. 中国地质,34(6): 1022-1031. [Shao L,Pang X,Chen C M,Shi H S,Li Q Y,Qiao P J.2007. Terminal Oligocene sedimentary environments and abrupt provenance change event in the northern South China Sea. Geology in China,34(6): 1022-1031] [10]邵磊,崔宇驰,乔培军,朱伟林,钟锴,周俊燊. 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报,21(2): 216-231. [Shao L,Cui Y C,Qiao P J,Zhu W L,Zhong K,Zhou J S.2019. Implications on the Early Cenozoic palaeogeographical reconstruction of SE Eurasian margin based on northern South China Sea palaeo-drainage system evolution. Journal of Palaeogeography(Chinese Edition),21(2): 216-231] [11]徐杰,姜在兴. 2019. 碎屑岩物源研究进展与展望. 古地理学报,21(3): 379-396. [Xu J,Jiang Z X.2019. Provenance analysis of clastic rocks: current research status and prospect. Journal of Palaeogeography(Chinese Edition), 21(3): 379-396] [12]徐亚军,杜远生,杨江海. 2007. 沉积物物源分析研究进展. 地质科技情报,26(3): 26-32. [Xu Y J,Du Y S,Yang J H.2007. Prospects of sediment provenance analysis. Geological Science and Technology Information, 26(3): 26-32] [13]徐长贵,杜晓峰,徐伟,赵梦. 2017. 沉积盆地“源-汇”系统研究新进展. 石油与天然气地质, 38(1): 1-11. [Xu C G,Du X F,Xu W,Zhao M.2017. New advances of the “Source-to-Sink”system research in sedimentary basin. Oil & Gas Geology,38(1): 1-11] [14]余烨,张昌民,张尚锋,施和生,杜家元. 2012. 惠州凹陷新近系珠江组物源方向研究. 断块油气田,19(1): 17-21. [Yu Y,Zhang C M,Zhang S F,Shi H S,Du J Y.2012. Research on source direction of Neogene Zhujiang Formation in Huizhou Depression. Fault-block Oil & Gas Field,19(1): 17-21] [15]张广平. 2007. 广东省中生代典型侵入岩隆升研究. 中南大学硕士学位论文. [Zhang G P. 2007. The uplift process research of pluton in Mesozoic in Guang Province.Masteral dissertation of Central South University] [16]张青林,张航飞,张向涛,杨林龙. 2018. 南海北部潮汕坳陷上白垩统盆地原型及其大地构造背景分析. 地球物理学报,61(10): 4308-4321. [Zhang Q L,Zhang H F,Zhang X T,Yang L L.2018. The Upper Cretaceous prototype basin of the Chaoshan depression in the northern South China Sea and its tectonic setting. Chinese Journal Geophysics, 61(10): 4308-4321] [17]张向涛,陈亮,佘清华,张素芳,乔培军,邵磊. 2012. 南海北部古韩江物源的演化特征. 海洋地质与第四纪地质,32(4): 41-48. [Zhang X T,Chen L,She Q H,Zhang S F,Qiao P J,Shao L.2012. Provenance evolution of the Paleo-Hanjiang River in the north South China Sea. Marine Geology & Quaternary Geology,32(4): 41-48] [18]张忠涛,张向涛,孙辉,石宁,张博,冯轩. 2019. 珠江口盆地渐新世陆架边缘三角洲沉积特征及其对成藏的控制作用. 石油学报,40(S1): 81-89. [Zhang Z T,Zhang X T,Sun H,Shi N,Zhang B,Feng X.2019. Sedimentary characteristics of Oligocene shelf edge delta and their control on hydrocarbon accumulation in Pear River Mouth Basin. Acta Petrolei Sinica,40(S1): 81-89] [19]赵红格,刘池洋. 2003. 物源分析方法及研究进展. 沉积学报,21(3): 409-415. [Zhao H G,Liu C Y.2003. Approaches and prospects of provenance analysis. Acta Sedimentologica Sinica,21(3): 409-415] [20]Bernet M.2009. A field-based estimate of the zircon fission-track closure temperature. Chemical Geology,259(3-4):181-189. [21]Laslett G M,Green P F,Duddy I R,Gleadow A J W.1987. Thermal annealing of fission tracks in apatite 2: a quantitative analysis. Chemical Geology,65(1): 1-13. [22]Li X M,Zou H P.2017. Late Cretaceous-Cenozoic exhumation of the southeastern margin of coastal mountains,SE China,revealed by fission-track thermochronology: implications for the topographic evolution. Solid Earth Sciences, 2(3): 79-88. [23]Li X M,Wang Y J,Tan K X,Peng T P.2005. Meso-Cenozoic uplifting and exhumation on Yunkaidashan: evidence from fission track thermochronology. Chinese Science Bulletin, 50(9): 903-909. [24]Reiners P W,Farley K A,Hickes H J.2002. He diffusion and (U-Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte. Tectonophysics, 349(1-4): 297-308. [25]Shao L,Cao L,Pang X,Jiang T,Qiao P J,Zhao M.2016. Detrital zircon provenance of the Paleogene syn-rift sediments in the northern South China Sea.G-cubed, 17: 255-269. [26]Smyth H R,Morton A,Richardson N,Scott R A.2014. Sediment provenance studies in hydrocarbon exploration and production: an introduction. Geological Society London Special Publication, 386: 1-6. [27]Tang D L K,Seward D,Wilson C J N,Sewell R J,Carter A,Paul B T.2014. Thermotectonic history of SE China since the Late Mesozoic: insights from detailed thermochronological studies of Hong Kong. Journal of the Geological Society, 171(4): 591-604. [28]Tang X Y,Yang S C,Hu S B.2020. Provenance of the Paleogene sediments in the Pearl River Mouth Basin,northern South China Sea: insights from zircon U-Pb and fission track double dating. Journal of Asian Earth Scienc, 200: 1-10. [29]Tsang P W.2010. Thermochronology inferring post-orogenic exhumation model around greater Pearl River delta region. Masteral dissertation of the University of Hong Kong(Pokfulam,Hong Kong). [30]Wang C,Wen S,Liang X Q,Shi H S,Liang X R.2018. Detrital zircon provenance record of the Oligocene Zhuhai Formation in the Pearl River Mouth Basin,northern South China Sea. Marine and Petroleum Geology, 98: 448-461. [31]Xu C H,Shi H S,Barnes C G,Zhou Z Y.2016. Tracing a Late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the northern South China Sea. International Geology Review, 58(1): 71-94. [32]Yan Y,Carter A,Xia B,Ge L,Brichau S,Hu X Q.2009. A fission-track and(U-Th)/He thermochronometric study of the northern margin of the South China Sea: an example of a complex passive margin. Tectonophysics, 474: 584-594.