High-frequency cyclic sequence of the Ma56 submember of Middle Ordovician Majiagou Formation in Ordos Basin: indication for sea-level change and sedimentary differentiation effect of Hengshan uplift
Zhong Shou-Kang1,2, Tan Xiu-Cheng1,2, Nie Wan-Cai3,4, Zhang Dao-Feng3, Yang Meng-Ying1,2, Lu Zi-Xing3, Zhang Xin-Yue1,2, Xiao Di1,2
1 Research Branch of Southwest Petroleum University,Key Laboratory of Carbonate Reservoirs,CNPC,Chengdu 610500,China; 2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China; 3 Research Institute of Exploration and Development,Changqing Oilfield Company of PetroChina,Xi'an 710021,China; 4 Yihuang Natural Gas Project Department,Changqing Oilfield Company of PetroChina,Yan'an 716000,China
Abstract Studies in high-frequency cyclic sequence is helpful to reveal much sedimentary information,such as sea-level changes,deposition response and palaeogeographic evolution during depositional stage of shallow carbonate platform,and their impacts on the sedimentary differentiation in the basin. Based on the rich drilling core data,the lithology characteristics and typical fifth-order cyclic sequence of the Ma56 submember of Middle Ordovician Majiagou Formation are studied. The results indicate that(1)5 types(Ⅰ~Ⅴ)of typical T-R single cycle have been identified based on the 9 rock types of symbiotic combination of carbonates and evaporites. The cycles of Ⅰ,Ⅱ and Ⅲ are characterized by dolomitic sediments of lagoon-shoal-mud mound,while cycles of Ⅳ and Ⅴ are characterized as gypsum-salt sediments of lagoon. The fifth-order high-frequency cyclic structural sections have been established according to the 5 types of single cycle;(2)Fischer plot established according to the fifth-order high-frequency cyclic sections indicates that the Ma56 submember developed in the late stage of the third-order cycle,which comprises 2 fourth-order cycles representing the trend of initial regression-rapid transgression-another regression;(3)the thickness statistics of fifth-order cycles shows that the development of uplift and depression corresponds to the period of the first fourth-order cycle. The Hengshan uplift was the depositional highland,which isolated the seawater between the west and east sides. During the second fourth-order cycle period,filling and leveling up weakened the impact of Hengshan uplift,promoting the seawater circulation and the salinity at the east and west sides of the uplift decreased. The study on the high-frequency cycles of the Ma56 submember has been well applied in the analysis of stratigraphy and sedimentology of the Ma56 submember in the Hengshan area,which can be further applied in the Majiagou Formation in the Ordos Basin.
Fund:China National Petroleum Corporation upstream field basic forward-looking project(No.2021DJ0501)
Corresponding Authors:
Tan Xiu-Cheng,born in 1970,is a professor and Ph. D. advisor of Southwest Petroleum University. He is mainly engaged in researches on carbonate sedimentology and reservoir geology.E-mail: tanxiucheng70@163.com。
About author: Zhong Shou-Kang,born in 1995,is a Ph.D. candidate in Southwest Petroleum University. He is mainly engaged in researches on carbonate and evaporite sedimentology. E-mail: zhongsk95@163.com。
Cite this article:
Zhong Shou-Kang,Tan Xiu-Cheng,Nie Wan-Cai et al. High-frequency cyclic sequence of the Ma56 submember of Middle Ordovician Majiagou Formation in Ordos Basin: indication for sea-level change and sedimentary differentiation effect of Hengshan uplift[J]. JOPC, 2022, 24(2): 245-260.
Zhong Shou-Kang,Tan Xiu-Cheng,Nie Wan-Cai et al. High-frequency cyclic sequence of the Ma56 submember of Middle Ordovician Majiagou Formation in Ordos Basin: indication for sea-level change and sedimentary differentiation effect of Hengshan uplift[J]. JOPC, 2022, 24(2): 245-260.
[1] 邓宏文. 2009. 高分辨率层序地层学应用中的问题探析. 古地理学报, 11(5): 471-480. [Deng H W. 2009. Discussion on problems of applying high resolution sequence stratigraphy. Journal of Palaeogeography(Chinese Edition), 11(5): 471-480] [2] 付金华,郑聪斌. 2001. 鄂尔多斯盆地奥陶纪华北海和祁连海演变及岩相古地理特征. 古地理学报, 3(4): 25-34. [Fu J H,Zheng C B. 2001. Evolution between North China Sea and Qilian Sea of the Ordovician and the characteristics of lithofacies palaeogeography in Ordos Basin. Journal of Palaeogeography(Chinese Edition), 3(4): 25-34] [3] 郭荣涛,张永庶,陈晓冬,张庆辉,王鹏,崔俊,姜营海,李亚峰,蒋启财,刘波. 2019. 柴达木盆地英西地区下干柴沟组上段高频旋回与古地貌特征. 沉积学报, 37(4): 812-824. [Guo R T,Zhang Y S,Chen X D,Zhang Q H,Wang P,Cui J,Jiang Y H,Li Y F,Jiang Q C,Liu B. 2019. High-frequency cycles and paleogeomorphic features of the Upper Member of the Lower Ganchaigou Formation in the Yingxi area,Qaidam Basin. Acta Sedimentologica Sinica, 37(4): 812-824] [4] 郭彦如,赵振宇,付金华,徐旺林,史晓颖,孙六一,高建荣,张延玲,张月巧,刘俊榜,刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报,33(S2): 95-109. [Guo Y R,Zhao Z Y,Fu J H,Xu W L,Shi X Y,Sun L Y,Gao J R,Zhang Y L,Zhang Y Q,Liu J B,Liu H. 2012. Sequence lithofacies paleogeography of the Ordovician in Ordos Basin,China. Acta Petrol Sinica,33(S2): 95-109] [5] 郭彦如,赵振宇,徐旺林,史晓颖,高建荣,包洪平,刘俊榜,张延玲,张月巧. 2014. 鄂尔多斯盆地奥陶系层序地层格架. 沉积学报, 32(1): 44-60. [Guo Y R,Zhao Z Y,Xu W L,Shi X Y,Gao J R,Bao H P,Liu J B,Zhang Y L,Zhang Y Q. 2014. Sequence stratigraphy of the Ordovician System in the Ordos Basin. Acta Sedimentologica Sinica, 32(1): 44-60] [6] 罗平,王石,李朋威,宋金民,金廷福,王果谦,杨式升. 2013. 微生物碳酸盐岩油气储层研究现状与展望. 沉积学报, 31(5): 807-823. [Luo P,Wang S,Li P W,Song J M,Jing T F,Wang G Q,Yang S S. 2013. Review and prospectives of microbial carbonate reservoirs. Acta Sedimentologica Sinica, 31(5): 807-823] [7] 蒋苏扬,张永生,黄文辉,邢恩袁,桂宝玲,彭渊,赵海彤,商雯君. 2019. 鄂尔多斯盆地奥陶系锶同位素地球化学特征. 地质学报, 93(11): 2889-2903. [Jiang S Y,Zhang Y S,Huang W H,Xin E Y,Gui B L,Peng Y,Zhao H T,Shang W J. 2019. Geochemical characteristics of Ordovician strontium isotope in the Ordos Basin. Acta Geologica Sinica, 93(11): 2889-2903] [8] 黄正良,武春英,马占荣,任军峰,包洪平. 2015. 鄂尔多斯盆地中东部奥陶系马家沟组沉积层序及其对储层发育的控制作用. 中国石油勘探, 20(5): 20-29. [Huang Z L,Wu C Y,Ma Z R,Ren J F,Bao H P. 2015. Sedimentary sequence of Ordovician Majiagou Formation in central and eastern part of Ordos Basin and its control over reservoir development. China Petroleum Exploration, 20(5): 20-29] [9] 苏中堂,佘伟,罗静兰,马国伟,张帅. 2021. 鄂尔多斯盆地奥陶系马五_(5)亚段沉积微相与古地理演化. 沉积学报, 39(6): 1344-1356. [Su Z T,She W,Luo J L,Ma G W,Zhang S. 2021. Microfacies and paleogeographic evolution of Ma55 Member in the Ordovician,Ordos Basin. Acta Sedimentologica Sinica, 39(6): 1344-1356] [10] 邵东波,包洪平,魏柳斌,蔡郑红,武春英,周黎霞,曹岩刚. 2019. 鄂尔多斯地区奥陶纪构造古地理演化与沉积充填特征. 古地理学报, 21(4): 537-556. [Shao D B,Bao H P,Wei L B,Cai Z H,Wu C Y,Zhou L X,Cao Y G. 2019. Tectonic palaeogeography evolution and sedimentary filling characteristics of the Ordovician in the Ordos area. Journal of Palaeogeography(Chinese Edition), 21(4): 537-556] [11] 席胜利,熊鹰,刘显阳,雷晶超,刘明洁,刘灵,刘耘,文汇博,谭秀成. 2017. 鄂尔多斯盆地中部奥陶系马五盐下沉积环境与海平面变化. 古地理学报, 19(5): 773-790. [Xi S L,Xiong Y,Liu X Y,Lei J C,Liu M J,Liu L,Liu Y,Wen H B,Tan X C. 2017. Sedimentary environment and sea level change of the subsalt interval of Member 5 of Ordovician Majiagou Formation in central Ordos Basin. Journal of Palaeogeography(Chinese Edition), 19(5): 773-790] [12] 王建功,张道伟,石亚军,张平,孙秀建,王爱萍,王玉林,高妍芳,张世铭,易定红. 2020. 柴达木盆地西部地区渐新世下干柴沟组上段盐湖沉积特征. 吉林大学学报(地球科学版), 50(2): 442-453. [Wang J G,Zhang D W,Shi Y J,Zhang P,Sun X J,Wang A P,Wang Y L,Gao Y F,Zhang S M,Yi D H. 2020. Salt lake depositional characteristics of Upper Member of Lower Ganchaigou Formation,western Qaidam Basin. Journal of Jilin University(Earth Science Edition), 50(2): 442-453] [13] 王起琮,张宇,杨奕华,杨伟利,李洁. 2018. 鄂尔多斯盆地马家沟组层序地层与岩相分布. 西北大学学报(自然科学版), 48(4): 568-577. [Wang Q C,Zhang Y,Yang Y H,Yang W L,Li J. 2018. Sequence stratigraphic and lithofacies distributions of Majiagou Formation in Ordos Basin. Journal of Northwest University(Natural Science Edition), 48(4): 568-577] [14] 王振涛,周洪瑞,王训练,景秀春,张永生,袁路朋,沈智军. 2016. 鄂尔多斯盆地西缘北部奥陶纪盆地原型: 来自贺兰山和桌子山地区奥陶系的沉积响应. 地质论评, 62(4): 1041-1061. [Wang Z T,Zhou H R,Wang X L,Jing X C,Zhang Y S,Yuan L P,Shen Z J. 2016. The Ordovician basin prototype in the northwest Ordos Basin: constraint from the Ordovician sedimentary respond in the Helan-Zhuozi Mountains. Geological Review, 62(4): 1041-1061] [15] 魏柳斌,陈洪德,郭玮,严婷,蔡郑红,周黎霞. 2021. 鄂尔多斯盆地乌审旗—靖边古隆起对奥陶系盐下沉积与储层的控制作用. 石油与天然气地质, 42(2): 391-400,521. [Wei L B,Chen H D,Guo W,Yan T,Cai Z H,Zhou L X. 2021. Wushen-Jingbian paleo-uplift and its control on the Ordovician subsalt deposition and reservoirs in Ordos Basin. Oil & Gas Geology, 42(2): 391-400,521] [16] 吴怀春,张世红,冯庆来,方念乔,杨天水,李海燕. 2011. 旋回地层学理论基础、研究进展和展望. 地球科学, 36(3): 409-428. [Wu H C,Zhang S H,Feng Q L,Fang N Q,Yang T S,Li H Y. 2011. Theoretical basis,research advancement and prospects of cyclostratigraphy. Earth Science, 36(3): 409-428] [17] 席胜利,于洲,张道锋,吴兴宁,孙哲,丁振纯. 2018. 鄂尔多斯盆地奥陶系盐下颗粒滩沉积模式及储层成因. 西北大学学报(自然科学版), 48(4): 557-567. [Xi S L,Yu Z,Zhang D F,Wu X N,Sun Z,Ding Z C. 2018. Sedimentary pattern and reservoir genesis of Ordovician pre-salt grain beach in Ordos Basin. Journal of Northwest University(Natural Science Edition), 48(4): 557-567] [18] 谢锦龙,吴兴宁,孙六一,于洲,王少依. 2013. 鄂尔多斯盆地奥陶系马家沟组五段岩相古地理及有利区带预测. 海相油气地质, 18(4): 23-32. [Xie J L,Wu X N,Sun L Y,Yu Z,Wang S Y. 2013. Lithofacies palaeogeography and potential zone prediction of Ordovician Majiagou Member-5 in Ordos Basin. Marine Origin Petroleum Geology, 18(4): 23-32] [19] 许淑梅,冯怀伟,李三忠,李萌. 2016. 贺兰山及周边地区加里东运动研究. 岩石学报, 32(7): 2137-2150. [Xu S M,Feng H W,Li S Z,Li M. 2016. Study on Caledonian Movement in Helanshan and its surrounding area. Acta Petrologica Sinica, 32(7): 2137-2150] [20] 姚泾利,赵永刚,雷卞军,郝海燕. 2008. 鄂尔多斯盆地西部马家沟期层序岩相古地理. 西南石油大学学报(自然科学版), 30(1): 33-37,16. [Yao J L,Zhao Y G,Lei B J,Hao H Y. 2008. Sequence lithofacies paleogeography of western Ordos Basin in Majiagou Stage,Ordovician. Journal of Southwest Petroleum University(Science & Technology Edition), 30(1): 33-37,16] [21] 翟永红. 1999. 用Fischer图解研究山西临汾中奥陶世马家沟组旋回层序. 岩石矿物学杂志, 18(2): 33-38. [Zhai Y H. 1999. The application of Fischer Plots to the analysis of cycles in Middle Ordovician Majiagou Formation in Linfen,Shanxi Province. Acta Petrologica et Mineralogica, 18(2): 33-38] [22] 张运波,王根厚,余正伟,赵宗举,王明健,孙衍鹏. 2013. 四川盆地中二叠统茅口组米兰科维奇旋回及高频层序. 古地理学报, 15(6): 777-786. [Zhang Y B,Wang G H,Yu Z W,Zhao Z J,Wang M J,Sun Y P. 2013. Milankovitch cycles and high-frequency sequences of the Middle Permian Maokou Formation in Sichuan Basin. Journal of Palaeogeography(Chinese Edition), 15(6): 777-786] [23] 郑荣才,文华国,李凤杰. 2017. 高分辨率层序地层学(第二版). 北京: 地质出版社. [Zheng R C,Wen H G,Li F J. 2017. High Resolution Sequence Stratigraphy(2nd Edition). Beijing: Geological Publishing House] [24] 周进高,席胜利,邓红婴,于洲,刘新社,丁振纯,李维岭,唐瑾. 2020. 鄂尔多斯盆地寒武系—奥陶系深层海相碳酸盐岩构造—岩相古地理特征. 天然气工业, 40(2): 41-53. [Zhou J G,Xi S L,Deng H Y,Yu Z,Liu X S,Ding Z C,Li W L,Tang J. 2020. Tectonic-lithofacies paleogeographic characteristics of Cambrian-Ordovician deep marine carbonate rocks in the Ordos Basin. Natural Gas Industry, 40(2): 41-53] [25] Al-Awwad S F,Collins L B. 2013. Carbonate-platform scale correlation of stacked high-frequency sequences in the Arab-D reservoir,Saudi Arabia. Sedimentary Geology, 294: 205-218. [26] Babel M,Schrieber B. 2014. Treatise on Geochemistry Geochemistry of Evaporites and Evolution of Seawater. Elsevier:483-560. [27] Benedictis D D,Bosence D,Waltham D. 2007. Tectonic control on peritidal carbonate parasequence formation: an investigation using forward tectono-stratigraphic modelling. Sedimentology, 54(3): 587-605. [28] Bosence D,Procter E,Aurell M,Bel-Kahla A,Boudagher-Fadel M,Casaglia F,Waltham D. 2009. A dominant tectonic signal in high-frequency,peritidal carbonate cycles?a regional analysis of Liassic platforms from western Tethys. Journal of Sedimentary Research, 79(6): 389-415. [29] Flügel E. 2010. Microfacies of Carbonate Rocks: analysis,Interpretation and Application. Springer. [30] Guo C,Chen D,Song Y,Zhou X,Ding Y,Zhang G. 2018. Depositional environments and cyclicity of the Early Ordovician carbonate ramp in the western Tarim Basin(NW China). Journal of Asian Earth Sciences, 158: 29-48. [31] Kemp D B,Wagoner Manen S M. 2019. Metre-scale cycles in shallow water carbonate successions: Milankovitch and stochastic origins. Sedimentology, 66(7): 2590-2604. [32] Ortí F,Salvany J M,Rosell L,Castelltort X,Inglès M,Playà E. 2018. Middle Triassic evaporite sedimentation in the Catalan basin: implications for the paleogeographic evolution in the NE Iberian platform. Sedimentary Geology, 374: 158-178. [33] Polina V A. 2015. Middle Devonian(Givetian)supratidal sabkha anhydrites from the Moesian Platform(Northeastern Bulgaria). Carbonates & Evaporites, 30(4): 439-449. [34] Sevillano A,Bádenas B,Rosales Ⅰ,Barnolas A,López-García J M. 2020. Orbital cycles,differential subsidence and internal factors controlling the high-frequency sequence architecture in a Sinemurian shallow carbonate platform(Mallorca Island,Spain). Sedimentary Geology, 407: 105729. [35] Sorento T,Olaussen S,Stemmerik L. 2020. Controls on deposition of shallow marine carbonates and evaporites-lower Permian Gipshuken Formation,central Spitsbergen,Arctic Norway. Sedimentology, 67(1): 207-238. [36] Xiong Y,Tan X C,Zuo Z,Zou G,Liu M J,Liu Y,Zhang J. 2019. Middle Ordovician multi-stage penecontemporaneous karstification in North China: implications for reservoir genesis and sea level fluctuations. Journal of Asian Earth Sciences, 183: 103969. [37] Yılmaz i Ö,Altıner D. 2006. Cyclic palaeokarst surfaces in Aptian peritidal carbonate successions(Taurides,southwest Turkey): internal structure and response to mid-Aptian sea-level fall. Cretaceous Research, 27(6): 814-827. [38] Zhong Y,Tan X C,Zhao L,Guo R,Li,F,Jin Z M,Xiao D. 2019. Identification of facies controlled eogenetic karstification in the Upper Cretaceous of the Halfaya oilfield and its impact on reservoir capacity. Geological Journal, 54(1): 450-465.