Genesis mechanism analysis of convolute laminations of the Upper Ordovician Lashenzhong Formation in western margin of Ordos Basin
LI Xiangdong1,2, CHEN Hongda1, CHEN Haiyan3, WEI Zeyi1
1 School of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093,China; 2 Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources,Institute of Geology, Chinese Academy of Geological Sciences,Beijing 100037,China; 3 Hainan Branch of China National Offshore Oil Corporation China Limited,Haikou 570312,China
Abstract Convolute lamination,which has very complicated genesis processes,is an important type of soft-sediment deformation structures. In deep-water deposition environments,there are very important significance both in understanding the formation mechanism of convolute laminations and improving the identification of internal-wave and internal-tide deposits by revealing the relationship between them. The convolute laminations were found in blocked turbidity current deposits of Upper Ordovician Lashenzhong Formation have been carried out in Zhuozishan area,Inner Mongolia,in the north of western Ordos Basin. It could be divided into two categories according to the morphology: vergent regular convolute laminations and cyclotron-like convolute laminations. The former type is characterized as tight anticlines,flat synclines and sand nuclear underlying anticline,which is frequently associated with bi-directional cross-beddings. The latter type,which is belonged to intra-stratal contortion,is often restricted to layers with truncation surface and is associated with sedimentary structures of combined-flow deposits and wave-ripple laminations. Based on the comprehensive research on sedimentary characteristics,convolute lamination features,associated sedimentary structures and other related research results,it can be inferred that the vergent regular convolute lamination is mainly induced by internal-tides and the density inversion occured during liquefaction. The deformation driven by Rayleigh-Taylor instability and subsequent modification due to continued horizontal shear imposed by flow. The cyclotron-like convolute lamination is mainly induced by short period internal waves which includes random internal-waves produced by reflected turbidity currents and internal solitary waves distorted from internal-tides. It is characterized as syn-depositional stratified liquefaction rather than density inversion. The deformation occurs induced by Kelvin-Helmholtz instability and further modification of horizontal shear imposed by flow.
Fund:Co-funded by the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources (No. J1901-16),the Science and Technology Special Project for Double First-class Construction of Kunming University of Science and Technology (No.202202AG050006)and the National Natural Science Foundation of China (No.41272119)
About author: LI Xiangdong,born in 1973,is an associate professor of the School of Land Resource Engineering of Kunming University of Science and Technology,with a Ph.D. degree obtained from the Yangtze University. He is currently engaged in research on sedimentology. E-mail: Lixiangdong614@163.com.
Cite this article:
LI Xiangdong,CHEN Hongda,CHEN Haiyan et al. Genesis mechanism analysis of convolute laminations of the Upper Ordovician Lashenzhong Formation in western margin of Ordos Basin[J]. JOPC, 2022, 24(6): 1130-1148.
LI Xiangdong,CHEN Hongda,CHEN Haiyan et al. Genesis mechanism analysis of convolute laminations of the Upper Ordovician Lashenzhong Formation in western margin of Ordos Basin[J]. JOPC, 2022, 24(6): 1130-1148.
[1] 陈吉涛. 2020. 软沉积物变形构造研究进展. 地层学杂志, 44(1): 64-75. [Chen J T. 2020. Research progress of soft-sediment deformation structures. Journal of Stratigraphy, 44(1): 64-75] [2] 杜远生,余文超. 2017. 地震和非地震引发的软沉积物变形. 古地理学报, 19(1): 65-72. [Du Y S,Yu W C. 2017. Earthquake-caused and non-earthquake-caused soft-sediment deformations. Journal of Palaeogeography(Chinese Edition), 19(1): 65-72] [3] 方欣华,杜涛. 2004. 海洋内波基础和中国海内波. 山东青岛: 中国海洋大学出版社,1-123. [Fang X H,Du T. 2004. Fundamentals of oceanic internalwaves and internal waves in the China Seas. Shandong Qingdao: China Ocean University Press,1-123] [4] 冯增昭. 1994. 沉积岩石学(第二版).北京: 石油工业出版社,87-88. [Feng Z Z. 1994. Sedimentary Petrology(second edition). Beijing: Petroleum Industry Press,87-88] [5] 冯增昭,鲍志东,郑秀娟,王媛. 2017. 中国软沉积物变形构造及地震岩研究简评. 古地理学报, 19(1): 7-12. [Feng Z Z,Bao Z D,Zheng X J,Wang Y. 2017. Researches of soft-sediment deformation structures and seismites in China: a brief review. Journal of Palaeogeography(Chinese Edition), 19(1): 7-12] [6] 傅力浦,胡云绪,张子福,王树洗. 1993. 鄂尔多斯中、上奥陶统沉积环境的生物标志. 西北地质科学, 14(2): 1-88. [Fu L P,Hu Y X,Zhang Z F,Wang S X. 1993. The mark on the ecology of sedimentarial environment in Middle and Upper Ordovician at Ordos Basin. Northwest Geoscience, 14(2): 1-88] [7] 黄宝春,朱日祥. 1996. 华北地块早古生代古地磁结果的大地构造意义. 地球物理学报,39(增刊): 166-172. [Huang B C,Zhu R X. 1996. Tectonic implications of early Paleozoic paleomagnetic resuls in North China Block. Acta Geophysica Sinica,39(suppl.): 166-172] [8] 高振中,罗顺社,何幼斌,张吉森. 1995. 鄂尔多斯西缘奥陶纪海底扇沉积体系. 石油与天然气地质, 16(2): 119-125. [Gao Z Z,Luo S S,He Y B,Zhang J S. 1995. Ordovician submarine fan systems in west margin of Ordos. Oil & Gas Geology, 16(2): 119-125] [9] 郭彦如,赵振宇,付金华,徐旺林,史晓颖,孙六一,高建荣,张延玲,张月巧,刘俊榜,刘虹. 2012. 鄂尔多斯盆地奥陶纪层序岩相古地理. 石油学报,33(增刊2): 95-109. [Guo Y R,Zhao Z Y,Fu J H,Xu W L,Shi X Y,Sun L Y,Gao J R,Zhang Y L,Zhang Y Q,Liu J B,Liu H. 2012. Equence lithofacies paleogeography of the Ordovician in Ordos basin,China. Acta Petrolei Sinica,33(suppl. 2): 95-109] [10] 晋慧娟,孙明良,李育慈. 2004. 内蒙古桌子山中奥陶统的“特殊”浊积岩系. 沉积学报, 23(1): 34-40. [Jin H J,Sun M L,Li Y C. 2004. The “special” turbidite measure of the Middle Ordovician Series in Zhuozishan area,Inner Mongolia. Acta Sedimentologica Sinica, 23(1): 34-40] [11] 景秀春,周洪瑞,王训练,杨志华,房强,王振涛,樊杰. 2020. 华北板块奥陶纪牙形石生物地层研究回顾及在西北缘区新进展. 地学前缘, 27(6): 199-212. [Jing X C,Zhou H R,Wang X L,Yang Z H,Fang Q,Wang Z T,Fan J. 2020. A review on Ordovician conodont biostratigraphy of the North China Plate and new research advances on its northwestern margin. Earth Science Frontiers, 27(6): 199-212] [12] 李华,何幼斌,黄伟,刘朱睿鸷,张锦. 2016. 鄂尔多斯盆地南缘奥陶系平凉组等深流沉积. 古地理学报, 18(4): 631-642. [Li H,He Y B,Huang W,Liu Z R Z,Zhang J. 2016. Contourites of the Ordovician Pingliang Formationin southern margin of Ordos Basin. Journal of Palaeogeography(Chinese Edition), 18(4): 631-642] [13] 李华,何幼斌,冯斌,郝烃,苏帅亦,张灿,王季欣. 2018. 鄂尔多斯盆地西缘奥陶系拉什仲组深水水道沉积类型及演化. 地球科学, 43(6): 2149-2159. [Li H,He Y B,Feng B,Hao T,Su S Y,Zhang C,Wang J X. 2018. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 43(6): 2149-2159] [14] 李日辉. 1994. 桌子山中奥陶世公乌素组等积岩的确认及沉积环境. 石油与天然气地质, 15(3): 235-240. [Li R H. 1994. Identification of contourites in Middle Ordovician Gongwushu Formation,Zhuozishan,and depositional environment. Oil & Gas Geology, 15(3): 235-240] [15] 李三忠,赵淑娟,李玺瑶,曹花花,刘鑫,郭晓玉,肖文交,赖绍聪,闫臻,李宗会,于胜尧,兰浩圆. 2016. 东亚原特提斯洋(Ⅰ): 南北边界和俯冲极性. 岩石学报, 32(9): 2609-2627. [Li S Z,Zhao S J,Li X Y,Cao H H,Liu X,Guo X Y,Xiao W J,Lai S C,Yan Z,Li Z H,Yu S Y,Lan H Y. 2016. Proto-Tehtys Ocean in East Asia(I): northern and southern border faults and subduction polarity. Acta Petrologica Sinica, 32(9): 2609-2627] [16] 李向东. 2013. 关于深水环境下内波、内潮汐沉积分类的探讨. 地质论评, 59(6): 1097-1109. [Li X D. 2013. Proposed classification of internal-wave and internal-tide deposits in deep-water environment. Geological Review, 59(6): 1097-1109] [17] 李向东,陈海燕,陈洪达. 2019. 鄂尔多斯盆地西缘桌子山地区上奥陶统拉什仲组深水复合流沉积. 地球科学进展, 34(12): 1301-1305. [Li X D,Chen H Y,Chen H D. 2019. Deep-water combined-flow deposits of the upper ordovician Lashenzhong Formation in Zhuozishan area,western margin of Ordos Basin. Advances in Earth Science, 34(12): 1301-1305] [18] 李向东,陈海燕. 2020a. 深水环境下古水流方向分析和阻塞浊流沉积的识别: 以鄂尔多斯盆地桌子山地区上奥陶统拉什仲组为例. 石油学报, 41(11): 1348-1365. [Li X D,Chen H Y. 2020a. Palaeocurrent direction analysis and ponded turbidity currents recognition in deep-water environment: a case study of the Upper Ordovician Lashenzhong Formation in Zhuozishan area,Ordos Basin. Acta Petrolei Sinica, 41(11): 1348-1365] [19] 李向东,陈海燕. 2020b. 鄂尔多斯盆地西缘上奥陶统拉什仲组深水等深流沉积. 地球科学, 45(4): 1266-1280. [Li X D,Chen H Y. 2020b. Deep-water contour currents deposits of Upper Ordovician Lashizhong Formation in western margin of Ordos Basin. Earth Science, 45(4): 1266-1280] [20] 李向东. 2021. 地层记录中内波、内潮汐沉积研究进展及其页岩气勘探意义. 中南大学学报(自然科学版), 52(10): 3513-3528. [Li X D. 2021. Advances in research of geological internal-wave and internal-tide deposits and their exploration significance in shale gas. Journal of Central South University(Science and Technology), 52(10): 3513-3528] [21] 李向东,魏泽昳,陈洪达. 2022. 鄂尔多斯盆地西缘上奥陶统拉什仲组内波、内潮汐沉积成因分析. 地质学报,https://doi.org/10.19762/j.cnki.dizhixuebao.2022019. [Li X D,Wei Z Y,Chen H D. 2022. Genetic analysis of internal-wave and internal-tide deposits inUpper Ordovician Lashenzhong Formation,western Ordos basin. Acta Geologica Sinica,https://doi.org/10.19762/j.cnki.dizhixuebao.2022019] [22] 李勇,钟建华,邵珠福,毛毳. 2012. 软沉积变形构造的分类和形成机制研究. 地质论评, 58(5): 829-838. [Li Y,Zhong J H,Shao Z F,Mao C. 2012. An overview on the classification and genesis of soft-sediment deformation structure. Geological Review, 58(5): 829-838] [23] 刘训,游国庆. 2015. 中国的板块构造区划. 中国地质, 42(1): 1-17. [Liu X,You G Q. 2015. Tectonic regional subdivision of China in the light of plate theory. Geology in China, 42(1): 1-17] [24] 欧特尔 H,等. 2002. 普朗特流体力学基础. 朱自强,钱翼稷,李宗瑞,译. 2008. 北京: 科学出版社, 333-361. [Oertel H, et al. 2002. Prandtl-Essentials of Fluid Mechanics.Zhu Z Q,Qian Y J,Li Z R,translation. 2008. Beijing: Science Press, 333-361] [25] 吴东旭,周进高,吴兴宁,丁振纯,于洲,王少依,李维岭,王淑敏. 2018. 鄂尔多斯盆地西缘早中奥陶世岩相古地理研究. 高校地质学报, 24(5): 747-760. [Wu D X,Zhou J G,Wu X N,Ding Z C,Yu Z,Wang S Y,Li W L,Wang S M. 2018. Lithofacies and palaeogeography of the Early-Middle Ordovician in the Western Ordos Basin. Geological Journal of China Universities, 24(5): 747-760] [26] 肖彬,何幼斌,罗进雄,苑伯超. 2014. 内蒙古桌子山中奥陶统拉什仲组深水水道沉积. 地质论评, 60(2): 321-331. [Xiao B,He Y B,Luo J X,Yuan B C. 2014. Submarine channel complex deposits of the Middle Ordovician Lashizhong Formation in Zhuozishan area,Inner Mongolia. Geological Review, 60(2): 321-331] [27] 肖晖,赵靖舟,熊涛,吴伟涛,米敬奎,刘素彤. 2017. 鄂尔多斯盆地古隆起西侧奥陶系烃源岩评价及成藏模式. 石油与天然气地质, 38(6): 1087-1097. [Xiao H,Zhao J Z,Xiong T,Wu W T,Mi J K,Liu S T. 2017. Evaluation of Ordovician source rocks and natural gas accumulation patterns in west flank of a paleo-uplift,Ordos Basin. Oil & Gas Geology, 38(6): 1087-1097] [28] 张进,李锦轶,刘建峰,李岩峰,曲军峰,冯乾文. 2012. 早古生代阿拉善地块与华北地块之间的关系: 来自阿拉善东缘中奥陶统碎屑锆石的信息. 岩石学报, 28(9): 2912-2934. [Zhang J,Li J Y,Liu J F,Li Y F,Qu J F,Feng Q W. 2012. The relationship between the Alxa Block and the North China Plate during the Early Paleozoic: New information from the Middle Ordovician detrial zircon ages in the eastern Alxa Block. Acta Petrologica Sinica, 28(9): 2912-2934] [29] 张建新,于胜尧,李云帅,喻星星,林宜慧,毛小红. 2015. 原特提斯洋的俯冲、增生及闭合: 阿尔金—祁连—柴北缘造山系早古生代增生/碰撞造山作用. 岩石学报, 31(12): 3531-3554. [Zhang J X,Yu S Y,Li Y S,Yu X X,Lin Y H,Mao X H. 2015. Subduction,accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrologica Sinica, 31(12): 3531-3554] [30] 张元动,詹仁斌,甄勇毅,王志浩,袁文伟,方翔,马譞,张俊鹏. 2019. 中国奥陶纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 66-92. [Zhang Y D,Zhan R B,Zhen Y Y,Wang Z H,Yuan W W,Fang X,Ma X,Zhang J P. 2019. Ordovician integrative stratigraphy and timescale of China. Science China Earth Sciences, 62(1): 61-88] [31] 钟建华,宋冠先,倪良田,孙宁亮,郝兵,葛毓柱,薛纯琦,孙景耀,刘闯,曹梦春. 2019. 黄河下游与黄河三角洲现代非地震变形层理的研究. 沉积学报, 37(2): 239-253. [Zhong J H,Song G X,Ni L T,Sun N L,Hao B,Ge Y Z,Xue C Q,Sun J Y,Liu C,Cao M C. 2019. Modern non-seismically induced deformation bedding in the Lower Reaches of the Yellow River and Yellow River Delta. Acta Sedimentologica Sinica, 37(2): 239-253] [32] Al-Mufti O N,Arnott R W C. 2020. The origin and significance of convolute lamination and pseudonodules in anancient deep-marine turbidite system: from deposition to diagenesis. Journal of Sedimentary Research, 90(5): 480-492. [33] Alsop G I,Weinberger R,Marco S,Levi T. 2019. Identifying soft-sediment deformation in rocks. Journal of Structural Geology, 125: 248-255. [34] Arnott R W C. 1993. Quasi-planar-laminated sandstone beds of the Lower Cretaceous Bootlegger Member,North-central Montana: evidence of combined-flow sedimentation. Journal of Sedimentary Research, 63(3): 488-494. [35] Cowan E A,Christoffersen P,Powell R D. 2012. Sedimentological signature of a deformable bed preserved beneath an ice stream in a Late Pleistocene glacial sequence,Ross Sea,Antarctica. Journal of Sedimentary Research, 82(4): 270-282. [36] Gao Z Z,Eriksson K A,He Y B,Luo S S,Guo J H. 1998. Deep-water traction current deposits: a study of internal tides,internal waves,contour currents and their deposits.Beijing and New York: Science Press,Utrecht and Tokyo: VSP international Science Publishers: 1-123. [37] Gladstone C,Mcclelland H L O,Woodcock N H,Pritchard D,Hunt J E. 2018. The formation of convolute lamination in mud-rich turbidites.Sedimentology, 65(5): 1800-1825. [38] He Y B,Luo J X,Li X D,Gao Z Z,Wen Z. 2011. Evidence of internal-wave and internal-tide depositsin the Middle Ordovician Xujiajuan Formation of the Xiangshan Group,Ningxia,China.Geo-Marine Letters, 31(5-6): 509-523. [39] Korneva I,Tondi E,Jablonska D,Celma C D,Alsop I,Agosta F. 2016. Distinguishing tectonically-and gravity-driven synsedimentary deformation structures along the Apulian platform margin(Gargano Promontory,southern Italy).Marine and Petroleum Geology, 73: 479-491. [40] Li W J,Chen J T,Hakim A J,Myrow P M. 2022. Middle Ordovician mass-transport deposits from western Inner Mongolia,China: mechanisms and implications for basin evolution.Sedimentology, 69(3): 1301-1338. [41] Liu X L,Jia Y G,Zheng J W,Wen M Z,Shan H X. 2017. An experimental investigation of wave-induced sediment responses in a natural silty seabed: new insights into seabed stratification.Sedimentology, 64(2): 508-529. [42] Lomas S A. 1999. A Lower Cretaceous clastic slope succession,Livingston Island,Antarctica: sand-body characteristics,depositional processes and implications for slope apron depositional models.Sedimentology, 46(3): 477-504. [43] Marchès E,Mulder T,Gonthier E,Cremer M,Hanquiez V,Garlan T,Lecroart P. 2010. Perched lobe formation in the Gulf of Cadiz: interactions between gravity processes and contour currents(Algarve Margin,Southern Portugal).Sedimentary Geology, 229(3): 81-94. [44] Moretti M,Sabato L. 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin(Southern Italy): seismic shock vs. overloading.Sedimentary Geology, 196: 31-35. [45] Mörz T,Karlik E A,Kreiter S,Kopf A. 2007. An experimental setup for fluid venting in unconsolidated sediments: new insights to fluid mechanics and structures.Sedimentary Geology, 196: 251-267. [46] Nie S H,Jiang Q,Cui L,Zhang C K.2020. Investigation on solid-liquid transition of soft mud under steady and oscillatory shear loads.Sedimentary Geology, 397: 105570,https://doi.org/10.1016/j.sedgeo.2019.105570. [47] Oliveira C M M,Hodgson D M,Flint S S. 2009. Aseismic controls on in situ soft-sediment deformation processes and products in submarine slope deposits of the Karoo Basin,South Africa.Sedimentology, 56(5): 1201-1225. [48] Ortner H,Kilian S. 2016. Sediment creep on slopes in pelagic limestones: Upper Jurassic of Northern Calcareous Alps,Austria.Sedimentary Geology, 344: 350-363. [49] Owen G,Moretti M,Alfaro P. 2011. Recognising triggers for soft-sediment deformation: crrent understanding and future directions.Sedimentary Geology, 235: 133-140. [50] Patacci M,Haughton P D W,Mccaffrey W D. 2015. Flow behavior of ponded turbidity currents. Journal of Sedimentary Research, 85(8): 885-902. [51] Rana N,Sati S P,Sundriyal Y,Juyal N. 2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley,Garhwal Himalaya,India.Sedimentary Geology, 344: 263-276. [52] Spence G H,Tucker M E. 1997. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review.Sedimentary Geology, 112: 163-193. [53] Stegmann S,Sultan N,Kopf A,Apprioual R,Pelleau P. 2011. Hydrogeology and its effect on slope stability along the coastal aquifer of Nice,France.Marine Geology, 280: 168-181. [54] Sumer B M,Hatipoglu F,Fredsøe J,Sumer S K. 2006. The sequence of sediment behaviour during wave-induced liquefaction.Sedimentology, 53(3): 611-629. [55] Sumner E J,Amy L A,Talling P J. 2008. Deposit structure and processes of sand deposition from decelerating sediment suspensions. Journal of Sedimentary Research, 78(8): 529-547. [56] Sun J P,Dong Y P. 2020. Ordovician tectonic shift in the western North China Craton constrained by stratigraphic and geochronological analyses.Basin Research, 32(6): 1413-1440. [57] Tinterri R,Magalhaes P M,Tagliaferri A,Cunha R S. 2016. Convolute laminations and load structures in turbidites as indicators offlow reflections and decelerations against bounding slopes: examples from the Marnoso-arenacea Formation(northern Italy)and Annot Sand stones(south eastern France).Sedimentary Geology, 344: 382-407. [58] Tsui Y,Helfrich S C. 1983. Wave-induced pore pressure in submergedsand layer. Journal of Geotechnical Engineering, 109: 603-618. [59] Walker R G. 1967. Turbidite sedimentary structures and their relationship to proximal and distal depositional environments. Journal of Sedimentary Petrology, 37(1): 25-43. [60] Wang Z,Fan R,Zong R,GongY M. 2021. Composition and spatiotemporal evolution of the mixed turbidite-contourite systems from the Middle Ordovician,in western margin of the North China Craton.Sedimentary Geology, 421: 105943,https://doi.org/10.1016/j.sedgeo.2021.105943. [61] Zhao X X,Coe R S,Liu C,ZhouY X. 1992. New Cambrianand Ordovician paleomagnetic poles for the North China Block and their paleogeographic implications. Journal of Geophysical Research,97(B2): 1767-1788.