Sequence stratigraphic model of Bozhong subbasin during a syn-rift to post-rift transition and its controls on regionally extensive sublacustrine fans
GONG Chenglin1,2, XU Changgui3, GUAN Dayong4, WANG Qiming4, LI Dongwei1,2
1 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China; 3 China National Offshore Oil Corporation,Beijing 100010,China; 4 Bohai Petroleum Research Institute,Tianjin Branch of CNOOC Ltd.,Tianjin 300459,China
Abstract The marked difference in sequence stratigraphy between lacustrine and marine basins requires the establishment of sequence stratigraphic model with function of predicting sublacustrine fans,aiming to a better prediction of areally extensive sublacustrine fans in the Oligocene Dongying Formation of the Bozhong subbasin. Five unconformities and four maximum flooding surfaces are recognized,based on seismic and borehole datasets. They divide the Oligocene Dongying Formation into four third-order sequences,each of which contains an expanding systems tract(retrogradational to aggradational parasequences)and regressive systems tract(progradational parasequences),resulting in an expanding-regressive sequence model. Regionally extensive channelized sublacustrine fans(i.e.,channel-lobe complexes)are composed of feeder channels and terminational fans,which consist of lobe axes,lobe fringes,and lobe distal fringes. They are mainly seen to occur in expanding systems tracts immediately above the sequence boundaries,and mainly occur on the gentle slope in front of syndepositional slope-break zones. They represent comprehensive responses to high sediment supply and vigorous sediment-gravity flows under humid climatic conditions,and to syndepositional slope-break zones. Regionally extensive channelized sublacustrine fans,coupled to favorable hydrocarbon-accumulation conditions,can form big subtle traps,which are the most favorable exploration targets of Oligocene Dongying Formation of the Bozhong subbasin. Regionally extensive non-channelized sublacustrine fans(i.e.,mass-transport complexes)contain mass-transport deposits and sandy debrites. They mainly seen to occur in regressive systems tracts immediately above the maximum flooding surfaces,and mainly occur on the steep slope in front of syndepositional slope-break zones or the hanging wall of boundary faults. They represent comprehensive responses to low sediment supply and diluted sediment-gravity flows under arid climatic conditions and to the mass-wasting processes induced by high relief gradients and other triggers. Regionally extensive non-channelized sublacustrine fans,coupled to other favorable hydrocarbon-accumulation conditions,can form big subtle traps,which are the favorable exploration targets of Oligocene Dongying Formation of the Bozhong subbasin.
Fund:industry project of lithologic trap distributions,hydrocarbon accumulation mechanisms,and favourable target predictions of northern slope in the Paleogene Bonan Low Uplift from the Tianjin Branch of CNOOC Ltd(No. CCL2020TJX0NST1276)
About author: GONG Chenglin,born in 1983,professor,is engaged in teaching and researches on deepwater sedimentology,sequence stratigraphy and source-sink system. E-mail: chenglingong@cup.edu.cn.
Cite this article:
GONG Chenglin,XU Changgui,GUAN Dayong et al. Sequence stratigraphic model of Bozhong subbasin during a syn-rift to post-rift transition and its controls on regionally extensive sublacustrine fans[J]. JOPC, 2023, 25(5): 992-1010.
GONG Chenglin,XU Changgui,GUAN Dayong et al. Sequence stratigraphic model of Bozhong subbasin during a syn-rift to post-rift transition and its controls on regionally extensive sublacustrine fans[J]. JOPC, 2023, 25(5): 992-1010.
[1] 龚承林,齐昆,徐杰,刘喜停,王英民. 2021. 深水源-汇系统对多尺度气候变化的过程响应与反馈机制. 沉积学报, 39(1): 231-252. [Gong C L,Qi K,Xu J,Liu X T,Wang Y M.2021. Process-product linkages and feedback mechanisms of deepwater source-to-sink responses to multi-scale climate changes. Acta Sedimentologica Sinica, 39(1): 231-252] [2] 龚承林,Ronald J. Steel,彭旸,王英民,李东伟. 2022. 深海碎屑岩层序地层学50年(1970-2020)重要进展. 沉积学报, 40(2): 292-318. [Gong C L,Steel R J,Peng Y,Wang Y M,Li D W.2022. Major advances in deep-marine siliciclastic sequence stratigraphy,1970 to 2020. Acta Sedimentologica Sinica, 40(2): 292-318] [3] 姜涛,辛仁臣. 2015. 松辽盆地北部西部斜坡姚家组四级层序格架沉积微相分布. 东北石油大学学报, 39(1): 32-41. [Jiang T,Xin R C.2015. Sedimentary microfacies distribution under the 4th order sequence stratigraphic framework of the Yaojia Formation in west slope of the northern part of Songliao Basin. Journal of Northeast Petroleum University, 39(1): 32-41] [4] 李思田,潘元林,陆永潮,任建业,解习农,王华. 2002. 断陷湖盆隐蔽油藏预测及勘探的关键技术: 高精度地震探测基础上的层序地层学研究. 地球科学, 27(5): 592-598. [Li S T,Pan Y L,Lu Y C,Ren J Y,Xie X N,Wang H.2002. Key technology of prospecting and exploration of subtle traps in lacustrine fault basins: sequence stratigraphic researches on the basis of high resolution seismic survey. Earth Science, 27(5): 592-598] [5] 林畅松,潘元林,肖建新,孔凡仙,刘景彦,郑和荣. 2000. “构造坡折带”: 断陷盆地层序分析和油气预测的重要概念. 地球科学, 25(3): 260-266. [Lin C S,Pan Y L,Xiao J X,Kong F X,Liu J Y,Zheng H R.2000. Structural slope-break zone: key concept for stratigraphic sequence analysis and petroleum forecasting in fault subsidence basins. Earth Science, 25(3): 260-266] [6] 林畅松. 2019. 盆地沉积动力学: 研究现状与未来发展趋势. 石油与天然气地质, 40(4): 685-700. [Lin C S.2019. Sedimentary dynamics of basin: status and trend. Oil & Gas Geology, 40(4): 685-700] [7] 刘化清,刘宗堡,吴孔友,徐怀民,杨占龙,孙夕平,倪长宽,康继伦,王牧,靳继坤. 2021. 岩性地层油气藏区带及圈闭评价技术研究新进展. 岩性油气藏, 33(1): 25-36. [Liu H Q,Liu Z B,Wu K Y,Xu H M,Yang Z L,Sun X P,Ni C K,Kang J L,Wang M,Jin J K.2021. New progress in study of play and trap evaluation technology for lithostratigraphic reservoirs. Lithologic Reservoirs, 33(1): 25-36] [8] 刘艺萌,张藜,黄晓波,郑敬贵,徐伟. 2019. 辽中凹陷北洼古近系东二下亚段湖底扇沉积类型及时空演化机理分析. 沉积学报, 37(6): 1280-1295. [Liu Y M,Zhang L,Huang X B,Zheng J G,Xu W.2019. Sedimentary types and genetic mechanism of the space-time evolution of sublacustrine fans of the Paleogene in lower Ed2 formation,northern sub-sag of the Liaozhong sag. Acta Sedimentologica Sinica, 37(6): 1280-1295] [9] 马正武,官大勇,王启明,刘尧均,李晓辉. 2022. 辽中凹陷古近系东三段湖底扇沉积特征及控制因素. 岩性油气藏, 34(2): 131-140. [Ma Z W,Guan D Y,Wang Q M,Liu Y J,Li X H.2022. Sedimentary characteristics and controlling factors of sublacustrine fans of the third member of Paleogene Dongying Formation in Liaozhong Sag. Lithologic Reservoirs, 34(2): 131-140] [10] 牛成民,杜晓峰,王启明,张参,丁熠然. 2022. 渤海海域新生界大型岩性油气藏形成条件及勘探方向. 岩性油气藏, 34(3): 1-14. [Niu C M,Du X F,Wang Q M,Zhang C,Ding Y R.2022. Formation conditions and exploration direction of large-scale lithologic reservoirs of Cenozoic in Bohai Sea. Lithologic Reservoirs, 34(3): 1-14] [11] 解习农,任建业,焦养泉,葛立刚. 1996. 断陷盆地构造作用与层序样式. 地质论评, 42(3): 239-244. [Xie X N,Ren J Y,Jiao Y Q,Ge L G.1996. Tectonism and sequence patterns of down-faulted basins. Geological Review, 42(3): 239-244] [12] 徐长贵. 2022. 中国近海油气勘探新进展与勘探突破方向. 中国海上油气, 34(1): 9-16. [Xu C G.2022. New progress and breakthrough directions of oil and gas exploration in China offshore area. China Offshore Oil and Gas, 34(1): 9-16] [13] 张宏国,吕丁友,官大勇,王启明,刘军钊. 2021. 辽东湾地区辽中凹陷东营组湖底扇成藏差异性研究. 中国石油勘探, 26(3): 95-106. [Zhang H G,Lü D Y,Guan D Y,Wang Q M,Liu J Z.2021. Study on hydrocarbon accumulation difference of sub-lacustrine fan in Dongying Formation in Liaozhong sag,Liaodong Bay. China Petroleum Exploration, 26(3): 95-106] [14] 张新涛,张藜,李虹,王军. 2021. 渤海中部海域大型湖底扇地球物理响应及勘探意义. 成都理工大学学报(自然科学版), 48(6): 723-731. [Zhang X T,Zhang L,Li H,Wang J.2021. Geophysical response of large sublacustrine fan in central Bohai Sea and its exploration significance. Journal of Chengdu University of Technology(Science & Technology Edition), 48(6): 723-731] [15] 周心怀,王德英,于海波,杨海风,李龙. 2022. 环渤中地区浅层大规模岩性油藏的成藏主控因素与成藏模式. 石油勘探与开发, 49(4): 660-669,740. [Zhou X H,Wang D Y,Yu H B,Yang H F,Li L.2022. Major controlling factors and hydrocarbon accumulation models of large-scale lithologic reservoirs in shallow strata around the Bozhong sag,Bohai Bay Basin,China. Petroleum Exploration and Development, 49(4): 660-669,740] [16] 朱筱敏,康安,王贵文. 2003. 陆相坳陷型和断陷型湖盆层序地层样式探讨. 沉积学报, 21(2): 283-287. [Zhu X M,Kang A,Wang G W.2003. Sequence stratigraphic models of depression and faulted-down lake basins. Acta Sedimentologica Sinica, 21(2): 283-287] [17] 朱筱敏,陈贺贺,葛家旺,谈明轩,刘强虎,张自力,张亚雄. 2022. 陆相断陷湖盆层序构型与砂体发育分布特征. 石油与天然气地质, 43(4): 746-762. [Zhu X M,Chen H H,Ge J W,Tan M X,Liu Q H,Zhang Z L,Zhang Y X.2022. Characterization of sequence architectures and sandbody distribution in continental rift basins. Oil & Gas Geology, 43(4): 746-762] [18] Blum M D,Törnqvist T E.2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology, 47: 2-48. [19] Bohacs K M,Carroll A R,Neal J E,Mankiewicz P J.2000. Lake-basin type,source potential,and hydrocarbon character: an integrated sequence stratigraphic-geochemical framework. In: Gierlowski-Kordesch E H,Kelts K R(eds). Lake Basins Through Space and Time. American Association of Petroleum Geologists,Tulsa, 46: 3-34. [20] Bull S,Cartwright J,Huuse M.2009. A review of kinematic indicators from mass-transport complexes using 3D seismic data. Marine and Petroleum Geology, 26: 1132-1151. [21] Carroll A R,Bohacs K M.1999. Stratigraphic classification of ancient lakes: balancing tectonic and climatic controls. Geology, 27: 99. [22] Carroll A R,Bohacs K M.2001. Lake-type controls on petroleum source rock potential in nonmarine basins. AAPG Bulletin, 85(6): 1033-1053. [23] Catuneanu O,Abreu V,Bhattacharya J P,Blum M D,Dalrymple R W,Eriksson P G,Fielding C R,Fisher W L,Galloway W E,Gibling M R,Giles K A,Holbrook J M,Jordan R,St C Kendall C G,Macurda B,Martinsen O J,Miall A D,Neal J E,Nummedal D,Pomar L,Winker C.2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92: 1-33. [24] Dodd T J H,McCarthy D J,Richards P C.2019. A depositional model for deep-lacustrine,partially confined,turbidite fans: Early Cretaceous,North Falkland Basin. Sedimentology, 66: 53-80. [25] Feng Y L,Jiang S,Hu S Y,Li S T,Lin C S,Xie X N.2016. Sequence stratigraphy and importance of syndepositional structural slope-break for architecture of Paleogene syn-rift lacustrine strata,Bohai Bay Basin,E. China. Marine and Petroleum Geology, 69: 183-204. [26] Fongngern R,Olariu C,Steel R J,Krézsek C.2016. Clinoform growth in a Miocene,Para-tethyan deep lake basin: thin topsets,irregular foresets and thick bottomsets. Basin Research, 28: 770-795. [27] Ge Z Y,Nemec W,Gawthorpe R L,Hansen E W M.2017. Response of unconfined turbidity current to normal-fault topography. Sedimentology, 64: 932-959. [28] Gilli A,Anselmetti F S,Glur L,Wirth S B.2013. Lake sediments as archives of recurrence rates and intensities of past flood events. In: Schneuwly-Bollschweiler M,Stoffel M,Rudolf-Miklau F. Dating Torrential Processes on Fans and Cones. Dordrecht: Springer,225-242. [29] Gong C L,Sztanó O,Steel R J,Xian B Z,Galloway W E,Bada G.2019. Critical differences in sediment delivery and partitioning between marine and lacustrine basins: a comparison of marine and lacustrine aggradational to progradational clinothem pairs. GSA Bulletin, 131: 766-781. [30] Howlett D M,Gawthorpe R L,Ge Z Y,Rotevatn A,Jackson C A L.2021. Turbidites,topography and tectonics: evolution of submarine channel-lobe systems in the salt-influenced Kwanza Basin,offshore Angola. Basin Research, 33(2): 1076-1110. [31] Li Z X,Yang W,Wang Y S,Zhang L Q,Luo H M,Liu S H,Zhang L K,Luo X R.2019. Anatomy of a lacustrine stratigraphic sequence within the fourth member of the Eocene Shahejie Formation along the steep margin of the Dongying depression,eastern China. AAPG Bulletin, 103: 469-504. [32] Liu J P,Xian B Z,Ji Y L,Gong C L,Wang J H,Wang Z,Chen P,Song D L,Wei W Z,Zhang X M,Dou L X.2020. Alternating of aggradation and progradation dominated clinothems and its implications for sediment delivery to deep lake: the Eocene Dongying Depression,Bohai Bay Basin,East China. Marine and Petroleum Geology, 114: 104197. [33] Lyons R P,Scholz C A,Buoniconti M R,Martin M R.2011. Late Quaternary stratigraphic analysis of the Lake Malawi Rift,East Africa: an integration of drill-core and seismic-reflection data. Palaeogeography,Palaeoclimatology,Palaeoecology, 303: 20-37. [34] McHargue T R,Hodgson D M,Shelef E.2021. Architectural diversity of submarine lobate deposits. Frontiers in Earth Science, 9: 697170. [35] Moscardelli L,Wood L.2008. New classification system for mass transport complexes in offshore Trinidad. Basin Research, 20: 73-98. [36] Pan S X,Liu C Y,Li X B,Liang S J,Chen Q L,Zhang W T,Zhang S C.2019. Giant sublacustrine landslide in the Cretaceous Songliao Basin,NE China. Basin Research, 31: 1066-1082. [37] Pan S X,Liu H Q,Xu D N,Wei P S,Qu Y Q,Guan X,Liu C Y,Zhang S C.2020. Sublacustrine gravity-induced deposits: the diversity of external geometries and origins. Sedimentary Geology, 407: 105738. [38] Shanmugam G.2020. Gravity flows: types,definitions,origins,identification markers,and problems. Journal of the Indian Association of Sedimentologists, 37: 61-90. [39] Sztanó O,Szafián P,Magyar I,Horányi A,Bada G,Hughes D W,Hoyer D L,Wallis R J.2013. Aggradation and progradation controlled clinothems and deep-water sand delivery model in the Neogene Lake Pannon,Makó Trough,Pannonian Basin,SE Hungary. Global and Planetary Change, 103: 149-167. [40] Vail P R,Mitchum R M Jr,Thompson S. 1977. Seismic stratigraphy and global changes of sea level,part 4: global cycles of relative changes of sea level. In: Payton C W(ed). Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26: 83-97. [41] Zhang C C,Wei W,Zhang S,Wu C D,Fu X L,Cui K N.2016. Architecture of lacustrine mass-transport complexes in the Mesozoic Songliao Basin,China. Marine and Petroleum Geology, 78: 826-835. [42] Zhang J Y,Burgess P M,Granjeon D,Steel R.2021. Can sediment supply variations create sequences?insights from stratigraphic forward modelling. Basin Research, 31(2): 274-289.