1 National Key Laboratory of Petroleum Resources and Engineering,China University of Petroleum(Beijing),Beijing 102249,China; 2 College of Geosciences,China University of Petroleum(Beijing),Beijing 102249,China
Abstract Grade refers to the state of a river where sediment is conveyed without net deposition or net erosion but completely bypassed through the river. The concept of grade is fundamental to geomorphology,geology and stratigraphy,because it represents the critical condition between river aggradation and degradation. According to conventional views,rivers will spontaneously approach the theoretical graded profile and finally reach it,given constant external forcings such as stable base level and steady sediment supply. The conventional notion of grade is valid for local scale of the alluvial system,but not for system scale of the whole alluvial system from a source-to-sink perspective. This is because the conventional notion seldom considers the free boundary condition of the alluvial system(i.e.,the upper and lower boundary of the alluvial system can move freely). For example,extension of the alluvial system by delta progradation at the downstream end of the river is inevitably accompanied by alluvial aggradation. This indicates that in moving boundary conditions,the necessary condition for the alluvial river to attain the state of grade at system scale is base level fall rather than base level standstill. Physical and numerical experiments further verified that the alluvial river can reach system-scale grade by three ways. (1)Forced grade,which can be realized in fixed downstream boundary conditions,for example,the downstream end of the alluvial river cannot extend freely by extreme deep basin water depth. In this case,the alluvial river grades to stationary base level. (2)Autogenic grade,which is realized in full moving boundary conditions and the basin floor slope equals that of the alluvial system. In this case,constant rate of base level fall is necessary. (3)Allogenic grade,which is realized in full moving boundary conditions and the basin floor slope is steeper than that of the alluvial system. In this case,slowing down of the base level fall in a particular pattern is necessary. Genetic stratigraphy which highlights the stacking process of strata should fully take the three ways of grade into account,by which the interpretation of stacking of strata will be clearer.
Fund:National Natural Science Foundation of China(No.42172108)and Science Foundation of China University of Petroleum(Beijing)(Nos. 2462020BJRC002,2462020YXZZ020)
About author: WANG Junhui,born in 1988,is an associate professor from China University of Petroleum(Beijing). He is mainly engaged in sedimentology. E-mail: wangjunhui@cup.edu.cn.
Cite this article:
WANG Junhui,XIAN Benzhong. Revisiting the concept of alluvial river grade[J]. JOPC, 2023, 25(5): 1011-1031.
WANG Junhui,XIAN Benzhong. Revisiting the concept of alluvial river grade[J]. JOPC, 2023, 25(5): 1011-1031.
[1] 操应长,徐琦松,王健. 2018. 沉积盆地“源-汇”系统研究进展. 地学前缘, 25(4): 116-131. [Cao Y C,Xu Q S,Wang J.2018. Progress in “Source-to-Sink”system research. Earth Science Frontiers, 25(4): 116-131] [2] 陈星渝,张志杰,万力,袁选俊,周川闽,成大伟,刘银河. 2023. 深时源-汇系统要素的常用定量分析方法. 地质科技通报,1-17. DOI: 10.19509/j.cnki.dzkq.tb20220277. [Chen X Y,Zhang Z J,Wan L,Yuan X J,Zhou C M,Cheng D W,Liu Y H.2023. Quantitative analysis methods of source-to-sink systems in deep time and its progress. Bulletin of Geological Science and Technology,1-17] [3] 邓彩云,黄河清,刘晓芳,范北林. 2015. 冲积河流平衡理论在长江中下游河床演变中的应用性检验. 泥沙研究,(1): 55-60,74. [Deng C Y,Huang H Q,Liu X F,Fan B L.2015. Evaluation of the applicability of equilibrium theory for alluvial channel flow in the middle and Lower Yangtze River. Journal of Sediment Research,(1): 55-60,74] [4] 邓宏文,王红亮,宁宁. 2000. 沉积物体积分配原理: 高分辨率层序地层学的理论基础. 地学前缘, 7(4): 305-313. [Deng H W,Wang H L,Ning N.2000. Sediment volume partition principle: Theory basis for high-resolution sequence stratigraphy. Earth Science Frontiers, 7(4): 305-313] [5] 龚承林,Steel R J,彭旸,王英民,李东伟. 2021. 深海碎屑岩层序地层学50年(1970—2020)重要进展. 沉积学报, 40(2): 292-318. [Gong C L,Steel R J,Peng Y,Wang Y M,Li D W.2021. Major advances in deep-marine siliciclastic sequence stratigraphy,1970 to 2020. Acta Sedimentolocica Sinica, 40(2): 292-318] [6] 纪友亮,周勇. 2020. 层序地层学(第二版). 北京: 中国石化出版社. [Ji Y L,Zhou Y.2020. Sequence Stratigraphy(2nd Edition). Beijing: China Petrochemical Press] [7] 林畅松,夏庆龙,施和生,周心怀. 2015. 地貌演化、源-汇过程与盆地分析. 地学前缘, 22(1): 9-20. [Lin C S,Xia Q L,Shi H S,Zhou X H.2015. Geomorphological evolution,source to sink system and basin analysis. Earth Science Frontiers, 22(1): 9-20] [8] 马字发,张会平,马元旭,赵旭东. 2022. 河道沉积物粒度沿程变化特征及其影响因素. 地质学报, 96(10): 3658-3673. [Ma Z F,Zhang H P,Ma Y X,Zhao X D.2022. Downstream changes of riverbed grain size and its controls. Acta Geologica Sinica, 96(10): 3658-3673] [9] 邵龙义,王学天,李雅楠,刘炳强. 2019. 深时源-汇系统古地理重建方法评述. 古地理学报, 21(1): 67-81. [Shao L Y,Wang X T,Li Y N,Liu B Q.2019. Review on palaeogeographic reconstruction of deep-time source-to-sink systems. Journal of Palaeogeography(Chinese Edition), 21(1): 67-81] [10] 王嗣敏,刘招君. 2001. 基准面与可容空间变化分析及应用. 世界地质, 20(1): 1-7. [Wang S M,Liu Z J.2001. The analysis of base-level and accommodation space change and its application. World Geology, 20(1): 1-7] [11] 邬金华,毛志超,张哲. 1997. 河相层序地层研究进展述评. 地质科技情报, 16(3): 40-46. [Wu J H,Mao Z C,Zhang Z.1997. Review of the development of fluvial sequence stratigraphy. Geological Science and Technology Information, 16(3): 40-46] [12] 徐长贵,杜晓峰,徐伟,赵梦. 2017. 沉积盆地“源-汇”系统研究新进展. 石油与天然气地质, 38(1): 1-11. [Xu C G,Du X F,Xu W,Zhao M.2017. New advances of the “Source-to-Sink”system research in sedimentary basin. Oil & Gas Geology, 38(1): 1-11] [13] 朱红涛,徐长贵,朱筱敏,曾洪流,姜在兴,刘可禹. 2017. 陆相盆地源-汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. [Zhu H T,Xu C G,Zhu X M,Zeng H L,Jiang Z X,Liu K Y.2017. Advances of the source-to-sink units and coupling model research in continental basin. Earth Science, 42(11): 1851-1870] [14] 朱筱敏. 2023. 层序地层学. 山东东营: 中国石油大学出版社. [Zhu X M.2023. Sequence Stratigraphy. Shandong Dongying: China University of Petroleum Press] [15] 朱筱敏,谈明轩,董艳蕾,李维,秦祎,张自力. 2019. 当今沉积学研究热点讨论: 第20届国际沉积学大会评述. 沉积学报, 37(1): 1-16. [Zhu X M,Tan M X,Dong Y L,Li W,Qin Y,Zhang Z L.2019. Current hot topics of sedimentology: comment on the 20th international sedimentological congress. Acta Sedimentologica Sinica, 37(1): 1-16] [16] Allen P A.2008. From landscapes into geological history. Nature, 451: 274-276. [17] Allen P A,Allen J R.2005. Basin Analysis: Principles and Applications(version 2nd ed). Chichester,UK: Wiley-Blackwell,1-549. [18] Anthony E J,Brunier G,Besset M,Goichot M,Dussouillez P,Nguyen V L.2015. Linking rapid erosion of the Mekong River delta to human activities. Scientific Reports, 5: 14745. [19] Barrell J.1912. Criteria for the recognition of ancient delta deposits. Geological Society of America Bulletin, 23: 377-446. [20] Bates R L,Jackson J A.1987. Glossary of Geology,3rd Ed. Alexandria,VA.: American Geological Institute,788. [21] Bijkerk J F,Eggenhuisen J T,Kane I A,Meijer N,Waters C N,Wignall P B,McCaffrey W D.2016. Fluvio-marine sediment partitioning as a function of basin water depth. Journal of Sedimentary Research, 86: 217-235. [22] Blom A,Viparelli E,Chavarrías V.2016. The graded alluvial river: profile concavity and downstream fining. Geophysical Research Letters, 43: 6285-6293. [23] Blum M D,Törnqvist T E.2000. Fluvial responses to climate and sea-level change: a review and look forward. Sedimentology, 47: 2-48. [24] Bolla Pittaluga M,Luchi R,Seminara G.2014. On the equilibrium profile of river beds. Journal of Geophysical Research: Earth Surface, 119(2): 317-332. [25] Browne G H,Naish T R.2003. Facies development and sequence architecture of a late Quaternary fluvial-marine transition,Canterbury plains and shelf,New Zealand: implications for forced regressive deposits. Sedimentary Geology, 158(1-2): 57-86. [26] Catuneanu O.2006. Principles of Sequence Stratigraphy. Amsterdam: Elsevier,1-375. [27] Catuneanu O.2019. Model-independent sequence stratigraphy. Earth-Science Reviews, 188: 312-388. [28] Catuneanu O,Abreu V,Bhattacharya J P,Blum M D,Dalrymple R W,Eriksson P G,Fielding C R,Fisher W L,Galloway W E,Gibling M R,Giles K A,Holbrook J M,Jordan R,Kendall C G St C,Macurda B,Martinsen O J,Miall A D,Neal J E,Nummedal D,Pomar L,Posamentier H W,Pratt B R,Sarg J F,Shanley K W,Steel R J,Strasser A,Tucker M E,Winker C.2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, 92: 1-33. [29] Catuneanu O,Zecchin M.2016. Unique vs. non-unique stratal geometries: relevance to sequence stratigraphy. Marine and Petroleum Geology, 78: 184-195. [30] Catuneanu O,Zecchin M.2020. Parasequences: allostratigraphic misfits in sequence stratigraphy. Earth-Science Reviews, 208: 103289. [31] Chang H H.1986. River channel changes: adjustments of equilibrium. Journal of Hydraulic Engineering, 112(1): 43-55. [32] Clarke L,Quine T A,Nicholas A.2010. An experimental investigation of autogenic behaviour during alluvial fan evolution. Geomorphology, 115(3-4): 278-285. [33] Cross T A,Homewood P W.1997. Amanz Gressly?s role in founding modern stratigraphy. Geological Society of America Bulletin, 109(12): 1617-1630. [34] Cross T A,Lessenger M A.1998. Sediment volume partitioning: rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation. In: Gradstein F M,Sandvik K O,Milton N J(eds).Sequence Stratigraphy: Concepts and Applications. Norwegian Petroleum Society(NPF)Special Publication, 8: 171-195. [35] Davis W M.1902. Baselevel,grade and peneplain. The Journal of Geology, 10(1): 77-111. [36] Ferrer-Boix C,Chartrand S M,Hassan M A,Martín-Vide J P,Parker G.2016. On how spatial variations of channel width influence river profile curvature. Geophysical Research Letters, 43: 6313-6323. [37] Geleynse N,Storms J E A,Walstra D J R,Albert Jagers H R,Wang Z B,Stive M J F.2011. Controls on river delta formation: insights from numerical modelling. Earth and Planetary Science Letters, 302(1-2): 217-226. [38] Gilbert G K.1877. Geology of the Henry Mountains. Washington,D.C.: U.S. Government Printing Office, 160. [39] Green J F N.1936. The terraces of southernmost England. Quarterly Journal of the Geological Society of London,92(part 2): 58-88. [40] Gugliotta M,Saito Y.2019. Matching trends in channel width,sinuosity,and depth along the fluvial to marine transition zone of tide-dominated river deltas: the need for a revision of depositional and hydraulic models. Earth-Science Reviews, 191: 93-113. [41] Holbrook J,Scott R W,Oboh-Ikuenobe F E.2006. Base-level buffers and buttresses: a model for upstream versus downstream control on fluvial geometry and architecture within sequences. Journal of Sedimentary Research, 76(1): 162-174. [42] Jervey M T.1988. Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. In: Wilgus C K,Hastings B S,Kendall C G St C,Posamentier H W,Ross C A,van Wagoner J C(eds).Sea Level Changes: An Integrated Approach. SEPM(Society of Economic Paleontologists and Mineralogists)Special Publication, 42: 47-69. [43] Johnson D D,Beaumont C.1995. Preliminary results from a planform kinematic model of orogen evolution,surface processes and the development of clastic foreland basin stratigraphy. In: Dorobek S L,Ross G M(eds).Stratigraphic Evolution of Foreland Basins. SEPM(Society of Economic Paleontologists and Mineralogists)Special Publication, 52: 3-24. [44] Karamitopoulos P,Weltje G J,Dalman R A F.2021. Large-scale connectivity of fluvio-deltaic stratigraphy: inferences from simulated accommodation-to-supply cycles and automated extraction of chronosomes. Basin Research, 33(1): 382-402. [45] Kesseli J E.1941. The concept of the graded river. The Journal of Geology, 49(6): 561-588. [46] Kim Y,Kim W,Cheong D,Muto T,Pyles D R.2013. Piping coarse-grained sediment to a deep water fan through a shelf-edge delta bypass channel: tank experiments. Journal of Geophysical Research: Earth Surface, 118(4): 2279-2291. [47] Leeder M R,Stewart M D.1996. Fluvial incision and sequence stratigraphy: alluvial responses to relative sea-level fall and their detection in the geological record. In: Hesselbo S P,Parkinson D N(eds).Sequence Stratigraphy in British Geology,Geological Society,London,Special Publications, 103: 25-39. [48] Leopold L B,Bull W B.1979. Base level,aggradation,and grade. Proceedings of the American Philosophical Society, 123: 168-202. [49] Li W,Wang Z B,de Vriend H J,van Maren D S.2014. Long-term effects of water diversions on the longitudinal flow and bed profiles. Journal of Hydraulic Engineering, 140(6): 04014021. [50] Liu J P,DeMaster D J,Nguyen T T,Saito Y,Nguyen V L,Ta T K O,Li X.2017. Stratigraphic formation of the Mekong River delta and its recent shoreline changes. Oceanography, 30: 72-83. [51] Mackin J H.1948. Concept of the graded river. Geological Society of America Bulletin, 59: 463-512. [52] Miall A D.2010. The Geology of Stratigraphic Sequences,2nd Ed. Berlin Heidelberg: Springer-Verlag, 316. [53] Milliman J D,Meade R H.1983. World-wide delivery of river sediment to the oceans. The Journal of Geology, 91: 1-21. [54] Muto T.2011. A new view of fluvial grade revealed by model experiments: alluvial response in the lower reaches of rivers to sea level. The Journal of the Geological Society of Japan, 117: 172-182. [55] Muto T,Steel R J.2000. The accommodation concept in sequence stratigraphy: some dimensional problems and possible redefinition. Sedimentary Geology, 130: 1-10. [56] Muto T,Steel R J.2004. Autogenic response of fluvial deltas to steady sea-level fall: implications from flume-tank experiments. Geology, 32(5): 401-404. [57] Muto T,Swenson J B.2005. Large-scale fluvial grade as a non-equilibrium state in linked depositional systems: theory and experiment. Journal of Geophysical Research: Earth Surface,110(F),F03002. [58] Muto T,Swenson J B.2006a. Autogenic attainment of large-scale alluvial grade with steady sea-level fall: an analog tank-flume experiment. Geology, 34: 161-164. [59] Muto T,Swenson J B.2006b. Controls on alluvial aggradation and degradation during steady fall of relative sea level: flume experiments. In: Parker G,Garcia M H(eds). Proceedings of the 4th IAHR Symposium of River,Coastal and Estuarine Morphodynamics. London: Taylor & Francis Group, 665-674. [60] Muto T,Steel R J,Swenson J B.2007. Autostratigraphy: a framework norm for genetic stratigraphy. Journal of Sedimentary Research, 77(1): 2-12. [61] Muto T,Furubayashi R,Tomer A,Sato T,Kim W,Naruse H,Parker G.2016a. Planform evolution of deltas with graded alluvial topsets: insights from three-dimensional tank experiments,geometric considerations and field applications. Sedimentology, 63(7): 2158-2189. [62] Muto T,Steel R J,Burgess P M.2016b. Contributions to sequence stratigraphy from analogue and numerical experiments. Journal of the Geological Society, 173(5): 837-844. [63] Nijhuis A G,Edmonds D A,Caldwell R L,Cederberg J A,Slingerland R L,Best J L,Parsons D R,Robinson R A J.2015. Fluvio-deltaic avulsions during relative sea-level fall. Geology, 43: 719-722. [64] Nones M,Varrani A,Franzoia M,Di Silvio G.2019. Assessing quasi-equilibrium fining and concavity of present rivers: a modelling approach. CATENA, 181: 104073. [65] Nummedal D,Riley G W,Templet P L.1993. High-resolution sequence architecture: a chronostratigraphic model based on equilibrium profile studies. In: Posamentier H W,Summerhayes C P,Haq B U,Allen G P(eds). Sequence Stratigraphy and Facies Associations. International Association of Sedimentologists Special Publication, 18: 55-68. [66] Paola C,Parker G,Seal R,Sinha S K,Southard J B,Wilcock P R.1992. Downstream fining by selective deposition in a laboratory flume. Science, 258(5089): 1757-1760. [67] Parker G,Anderson A G.1977. Basic principles of river hydraulics. Journal of the Hydraulics Division, 103: 1077-1087. [68] Petter A L,Muto T.2008. Sustained alluvial aggradation and autogenic detachment of the alluvial river from the shoreline in response to steady fall of relative sea level. Journal of Sedimentary Research, 78(2): 98-111. [69] Porebski S J,Steel R J.2006. Deltas and sea-level change. Journal of Sedimentary Research, 76(3): 390-403. [70] Posamentier H W,Vail P R.1988. Eustatic controls on clastic deposition Ⅱ—sequence and systems tract models. In: Wilgus C K,Hastings B S,Kendall C G St C,Posamentier H W,Ross C A,van Wagoner J C(eds). Sea Level Changes: An Integrated Approach. SEPM(Society of Economic Paleontologists and Mineralogists)Special Publication, 42: 125-154. [71] Posamentier H W,Jervey M T,Vail P R.1988. Eustatic controls on clastic deposition I—conceptual framework. In: Wilgus C K,Hastings B S,Kendall C G St C,Posamentier H W,Ross C A,van Wagoner J C(eds). Sea Level Changes: An Integrated Approach. SEPM(Society of Economic Paleontologists and Mineralogists)Special Publication, 42: 110-124. [72] Posamentier H W,Allen G P,James D P,Tesson M.1992. Forced regressions in a sequence stratigraphic framework: concepts,examples,and exploration significance. AAPG Bulletin,76: 1687-1709. [73] Posamentier H W,Allen G P.1999. Siliciclastic sequence stratigraphy. Concepts and Applications: SEPM,Concepts in Sedimentology and Paleontology,7,210. Tulsa,Okla. [74] Schumm S A.1993. River response to baselevel change: implications for sequence stratigraphy. The Journal of Geology, 101(2): 279-294. [75] Shanley K W,McCabe P J.1994. Perspectives on the sequence stratigraphy of continental strata. AAPG Bulletin,78: 544-568. [76] Sinha S K,Parker G.1996. Causes of concavity in longitudinal profiles of rivers. Water Resources Research, 32: 1417-1428. [77] Sømme T O,Helland-Hansen W,Martinsen O J,Thurmond J B.2009. Relationships between morphological and sedimentological parameters in source-to-sink systems: a basis for predicting semi-quantitative characteristics in subsurface systems. Basin Research, 21(4): 361-387. [78] Strong N,Paola C.2008. Valleys that never were: time surfaces versus stratigraphic surfaces. Journal of Sedimentary Research, 78(8): 579-593. [79] Swenson J B.2005. Relative importance of fluvial input and wave energy in controlling the timescale for distributary-channel avulsion. Geophysical Research Letters, 32: L23404. [80] Swenson J B,Muto T.2007. Response of coastal plain rivers to falling relative sea-level: allogenic controls on the aggradational phase. Sedimentology, 54(1): 207-221. [81] Swenson J B,Voller V R,Paola C,Parker G,Marr J G.2000. Fluvio-deltaic sedimentation: a generalized Stefan problem. European Journal of Applied Mathematics, 11: 433-452. [82] Swenson J B,Paola C,Pratson L,Voller V R,Murray A B.2005. Fluvial and marine controls on combined subaerial and subaqueous delta progradation: morphodynamic modeling of compound-clinoform development. Journal of Geophysical Research, 110: F02013 [83] Ta T K O,Nguyen V L,Tateishi M,Kobayashi I,Tanabe S,Saito Y.2002. Holocene delta evolution and sediment discharge of the Mekong River,southern Vietnam. Quaternary Science Reviews, 21: 1807-1819. [84] Ta T K O,Nguyen V L,Tateishi M,Kobayashi I,Saito Y. 2005. Holocene delta evolution and depositional models of the Mekong River Delta,southern Vietnam. In: Giosan L,Bhattacharya J P(eds).River Deltas: Concepts,Models,and Examples. SEPM(Society for Sedimentary Geology)Special Publication, 83: 453-466. [85] Tamura T,Saito Y,Sieng S,Ben B,Kong M,Sim I,Choup S,Akiba F.2009. Initiation of the Mekong River delta at 8 ka: evidence from the sedimentary succession in the Cambodian lowland. Quaternary Science Reviews, 28: 327-344. [86] Tamura T,Saito Y,Nguyen V L,Ta T K O,Bateman M D,Matsumoto D,Yamashita S.2012. Origin and evolution of interdistributary delta plains: insights from Mekong River delta. Geology, 40: 303-306. [87] Thorne J A,Swift D J P. 1991. Sedimentation on continental margins,Ⅱ: Application of the regime concept. In: Swift D J P,Oertel G F,Tillman R W,Thorne J A(eds).Shelf Sands and Sandstone Bodies: Geometry,Facies and Distribution. International Association of Sedimentologists Special Publication, 14: 33-58. [88] Vail P R,Mitchum Jr. R M,Thompson III S. 1977. Seismic stratigraphy and global changes of sea level,part 3: relative changes of sea level from coastal onlap. In: Payton C E(ed).Seismic Stratigraphy: Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, 26: 63-81. [89] Van Heijst M W I M,Postma G.2001. Fluvial response to sea-level changes: a quantitative analogue,experimental approach. Basin Research, 13(3): 269-292. [90] Van Wagoner J C,Posamentier H W,Mitchum R M J,Vail P R,Sarg J F,Loutit T S,Hardenbol J. 1988. An overview of the fundamentals of sequence stratigraphy and key definitions. In: Wilgus C K,Hastings B S,Kendall C G St C,Posamentier H W,Ross C A,van Wagoner J C(eds).Sea Level Changes: An Integrated Approach. SEPM(Society of Economic Paleontologists and Mineralogists)Special Publication, 42: 39-45. [91] Van Wagoner J C,Mitchum R M,Campion K M,Rahmanian V D.1990. Siliciclastic Sequence Stratigraphy in Well Logs,Cores,and Outcrops: concepts for High-Resolution Correlation of Time and Facies. AAPG Methods in Exploration Series,7: 1-60. [92] Wang J H,Muto T,Urata K,Sato T,Naruse H.2019a. Morphodynamics of river deltas in response to different basin water depths: an experimental examination of the grade index model. Geophysical Research Letters, 46(10): 5265-5273. [93] Wang J H,Tamura T,Muto T.2019b. Construction and destruction of an autogenic grade system: the late Holocene Mekong River delta,Vietnam. Geology, 47(7): 669-672. [94] Wang J H,Muto T.2021. Autostratigraphic modelling of the growth of alluvial-shelf systems during steady base-level cycles: two-dimensional tank experiments. Sedimentology, 68(1): 135-167. [95] Wheeler H E.1964. Baselevel,lithosphere surface,and time-stratigraphy. Geological Society of America Bulletin, 75(7): 599-610. [96] Wescott W A.1993. Geomorphic thresholds and complex response of fluvial systems: some implications for sequence stratigraphy. AAPG Bulletin, 77(7): 1208-1218.