Abstract It is one of the challenges in fluvial sedimentology to analyze the quantitative genesis of the lateral accretionary body of composite point bar. By selecting lidar data from the lower reaches of the Mississippi River,the internal characteristics of the lateral accretion of the composite point bar and the elevation data of the lateral accretion are analyzed,showing the characteristics of periodic changes. The Fourier transform calculation of the elevation data is used to obtain the lateral accumulation period of the compound point bar,which is highly fitted to the scale of the river channel. It implies that the lateral accumulation cycle is controlled by the seasonal flooding cycle of the river. The results provide a theoretical basis for quantitative genesis analysis of lateral accretionary body.
Fund:Financially supported by CNOOC project of “Research on Geophysical Technology and Its Application of Offshore Medium and Deep Reservoirs”(No. YXKY-2019-ZY-05)
Corresponding Authors:
Wang Xia-Bin,born in 1988,postdoctor,is mainly engaged in development geological research. E-mail: wangxb35@cnooc.com.cn.
About author: Fan Hong-Jun, born in 1977, senior engineer, is mainly engaged in development geological research. E-mail: fanhj@cnooc.com.cn.
Cite this article:
Fan Hong-Jun,Wang Xia-Bin,Hu Guang-Yi et al. Analysis of formation of lateral accretionary period of composite point bar: taking the lower reaches of Mississippi River as an example[J]. JOPC, 2021, 23(2): 421-434.
Fan Hong-Jun,Wang Xia-Bin,Hu Guang-Yi et al. Analysis of formation of lateral accretionary period of composite point bar: taking the lower reaches of Mississippi River as an example[J]. JOPC, 2021, 23(2): 421-434.
[1] 胡光义,肖大坤,范廷恩,宋来明,陈飞,井涌泉,高玉飞. 2019. 河流相储层构型研究新理论、新方法: 海上油田河流相复合砂体构型概念、内容及表征方法. 古地理学报, 21(1): 149-165. [Hu G Y,Xiao D K,Fan T E,Song L M,Chen F,Jing Y Q,Gao Y F.2019. New theory and method of fluvial reservoir architecture study: Concepts,contents and characterization of offshore oilfield fluvial compound sand-body architecture. Journal of Palaeogeography(Chinese Edition), 21(1): 149-165] [2] 林志鹏,单敬福,陈乐,孙千军,王义武,汪菲. 2018. 基于地貌形态学交融的现代曲流河道迁移构型表征. 沉积学报, 36(3): 427-445. [Lin Z P,Shan J F,Chen L,Sun Q J,Wang Y W,Wang F.2018. Geomorphology processes of channel planform migration on modern meandering rivers. Acta Sedimentologica Sinica, 36(3): 427-445] [3] 王夏斌,姜在兴,胡光义,范廷恩,王俊辉,卢欢. 2019. 辽河盆地西部凹陷古近系沙四上亚段沉积相及演化. 吉林大学学报(地球科学版), 49(5): 1222-1234. [Wang X B,Jiang Z X,Hu G Y,Fan T E,Wang J H,Lu H.2019. Sedimentary facies and evolution of Upper Fourth Member of Paleogene Shahejie Formation in Western Sag of Liaohe Basin. Journal of Jilin University(Earth Science Edition), 49(5): 1222-1234] [4] 杨丽娟,张白桦,叶旭桢. 2004. 快速傅里叶变换FFT及其应用. 光电工程,S1: 1-3. [Yang L J,Zhang B H,Ye X Z.2004. Fast Fourier transform and its applications. Opto Electronic Engineering,S1: 1-3] [5] Barlow M,Nigam S,Berbery E.2001. ENSO,Pacific decadal variability,and U.S. summertime precipitation,drought,and stream flow. Journal of Climate, 14(9): 2105-2128. [6] Bond G.1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science, 278(5341): 1257-1266. [7] Durkin P,Hubbard S,Holbrook J,Boyd R.2018. Evolution of fluvial meander-belt deposits and implications for the completeness of the stratigraphic record. Geological Society of America Bulletin, 130(5): 721-739. [8] Fedorov A,Philander S.2000. Is El Nino changing?Science, 228(5473): 1997-2002. [9] Gaswirth S B,Marra K R.2015. U.S. Geological Survey 2013 assessment of undiscovered resources in the Bakken and Three Forks Formations of the U.S. Williston Basin Province. AAPG Bulletin, 99(4): 639-660. [10] Ghinassi M,Moody J,Martin D.2018. Influence of extreme and annual floods on point-bar sedimentation: inferences from Powder River,Montana,USA. Geological Society of America Bulletin, 131(1): 71-83. [11] Hagstrom C,Hubbard S,Leckie D,Durkin P.2019. The effects of accretion-package geometry on lithofacies distribution in point-bar deposits. Journal of Sedimentary Research, 89(5): 381-398. [12] Herbert C,Alexander J,Amos K,Fielding C.2020. Unit bar architecture in a highly-variable fluvial discharge regime: examples from the Burdekin River,Australia. Sedimentology, 67(8): 576-605. [13] Hickin E.1974. The development of meanders in natural river-channels. American Journal of Science, 274(4): 414-442. [14] Holbrook J,Autin W,Rittenour T M,Marshak S,Goble R.2006. Stratigraphic evidence for millennial-scale temporal clustering of earthquakes on a continental-interior fault: Holocene Mississippi River floodplain deposits,New Madrid seismic zone,USA. Tectonophysics, 420(4): 431-454. [15] Ielpi A,Ghinassi M.2014. Planform architecture,stratigraphic signature and morphodynamics of an exhumed Jurassic meander plain(Scalby Formation,Yorkshire,UK). Sedimentology, 61(7): 1923-1960. [16] Kemp D,Wagoner M.2019. Metre-scale cycles in shallow water carbonate successions: Milankovitch and stochastic origins. Sedimentology, 66(3): 2590-2604. [17] Knox J C.2008. The Mississippi River System. In: Gupta A(ed). Large Rivers: Geomorphology and Management. John Wiley & Sons,Ltd: 145-182. [18] Labrecque P,Jensen J,Hubbard S.2011. Cyclicity in Lower Cretaceous point bar deposits with implications for reservoir characterization,Athabasca Oil Sands,Alberta,Canada. Sedimentary Geology, 242(1): 18-33. [19] Lageweg W,Dijk W,Baar A,Rutten J,Kleinhans M.2014. Bank pull or bar push: what drives scroll-bar formation in meandering rivers?Geology, 42(4): 319-322. [20] Markonis Y,Koutsoyiannis D.2013. Climatic variability over time scales spanning nine orders of magnitude: connecting Milankovitch Cycles with Hurst-Kolmogorov dynamics. Surveys in Geophysics, 34(2): 181-207. [21] Mauas P,Flamenco E,Buccino A.2008. Solar forcing of the stream flow of a continental scale South American river. Physical Review Letters, 101(16): 1-4. [22] Miall A D.1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth Science Reviews, 22(4): 261-308. [23] Nanson G C.1980. Point-bar and floodplain formation of the meandering Beatton River,northeastern British-Columbia,Canada. Sedimentology, 27(1): 3-29. [24] Peakall J,Ashworth P J,Best J L.2007. Meander-bend evolution,alluvial architecture,and the role of cohesion in sinuous river channels: a flume study. Journal of Sedimentary Research, 77(3): 197-212. [25] Rind D,Overpeck J.1993. Hypothesized causes of decade-to-century-scale climate variability: climate model results. Quaternary Science Reviews, 12(6): 357-374. [26] Roy D,Wulder M,Loveland T,Woodcock C E,Allen R G,Anderson M C.2014. Landsat-8: science and product vision for terrestrial global change research. Remote Sensing of Environment, 145(1): 154-172. [27] Sorrel P,Tessier B,Demory F,Delsinne N,Dominique M.2009. Evidence for millennial-scale climatic events in the sedimentary infilling of a macrotidal estuarine system,the Seine estuary(NW France). Quaternary Science Reviews, 28(5): 499-516. [28] Venzke S,Allen M,Sutton R,Rowell D.1999. The atmospheric response over the North Atlantic to decadal changes in sea surface temperature. Journal of Climate, 12(8): 2562-2584. [29] Wu H,Zhang S,Hinnov L,Jiang G,Feng Q,Li H.2013. Time-calibrated Milankovitch cycles for the late Permian. Nature Communications, 4(9): 1-8. [30] Yeh S,Kug J,Dewitte B,Kwon M,Kirtman B,Jin F.2014. El Nino in a changing climate. Nature, 461(1): 511-514.