Abstract Based on the existing hierarchical scheme of architectural units in clastic deposits,taking account of the evolution law of natural river sedimentation,the data base and economic development scale of offshore oil fields,and following the principle and basis of the geological bodies classification,an architecture hierarchy of fluvial compound sand-body in offshore oil field is established. In this paper,the basic characteristics of 13g rade architecture units of fluvial compound sand-body are systematically described from the aspects of geological genesis,main control factors,space-time scale,etc.,and the correlation between them and related sedimentary geological body grades is analyzed. The difference between the fluvial compound sand-body architecture hierarchy and the existing classification of reservoir architecture mainly lies in the adding of “composite point bar”,which is a composite sedimentary unit composed of multi-stage residual point bar. Composite point bar is the connecting point of reservoir architecture theory,offshore oil field data resolution and offshore oil field economic development scale. It is a good practice of “seismic guidance,well-seismic combination” research ideas in offshore oil field. It has been proved that the architecture hierarchy of fluvial compound sand-body has certain advantages for guiding offshore oil and gas development.
Fund:Co-funded by Open Fund Project of State Key Laboratory of Offshore Oil Exploitation(No. YXKY-2018-ZY-05)and Comprehensive Scientific Research Project of CNOOC(No. YXKY-2019-ZY-08)
About author: Hu Guang-Yi,born in 1961,Ph.D.,professional engineer,mainly engaged in oil and gas field exploration and development of geological research and production management. E-mail: hugy@cnooc.com.cn.
Cite this article:
. Analysis of fluvial compound sand-body architecturehierarchy in offshore oil field[J]. JOPC, 2021, 23(4): 810-823.
. Analysis of fluvial compound sand-body architecturehierarchy in offshore oil field[J]. JOPC, 2021, 23(4): 810-823.
[1] 白振强,王清华,杜庆龙,郝兰英,张善严,朱伟,于德水,王贺军. 2009. 曲流河砂体三维构型地质建模及数值模拟研究. 石油学报, 30(6): 898-907. [Bai Z Q,Wang Q H,Du Q L,Hao L Y,Zhang S Y,Zhu W,Yu D S,Wang H J.2009. Study on 3D architecture geology modeling and digital simulation in meandering reservoir. Acta Petrolei Sinica, 30(6): 898-907] [2] 陈飞,胡光义,范廷恩,孙立春,高云峰,王晖. 2015. 渤海海域W油田新近系明化镇组河流相砂体结构特征. 地学前缘, 22(2): 207-213. [Chen F,Hu G Y,Fan T E,Sun L C,Gao Y F,Wang H.2015. Sandbody architecture and sequence stratigraphy of fluvial facies,Neogene Minghuazhen Formation,W oilfield,Bohai Bay. Earth Science Frontiers, 22(2): 207-213] [3] 陈景山,彭军,周彦,谭秀成,李凌. 2007. 基准面旋回层序与油层单元划分关系. 西南石油大学学报, 29(2): 162-165. [Chen J S,Peng J,Zhou Y,Tan X C,Li L.2007. Relationship between base level cycle sequence and reservoir unit division. Journal of Southwest Petroleum University, 29(2): 162-165] [4] 邓宏文. 1995. 美国层序地层研究中的新学派: 高分辨率层序地层学. 石油与天然气地质, 16(2): 9-97. [Deng H W.1995. A new school of thought in sequence stratigraphic studies in U. S.: high-resolution sequence stratigraphy. Oil and Gas Geology, 16(2): 9-97] [5] 范廷恩,王海峰,胡光义,宋来明,张晶玉,张显文. 2018a.海上油田复合砂体构型解剖方法及其应用. 中国海上油气, 30(4): 102-112. [Fan T E,Wang H F,Hu G Y,Song L M,Zhang J Y,Zhang X W.2018a.Anatomy method of composite sand body architecture in offshore oilfield and its application. China Offshore Oil and Gas, 30(4): 102-112] [6] 范廷恩,王海峰,张晶玉,汤婧,高玉飞,于斌. 2018b. 基于中期旋回洪泛面的河流相地层等时划分. 吉林大学学报: 地球科学版, 48(5): 1316-1329. [Fan T E,Wang H F,Zhang J Y,Tang J,Gao Y F,Yu B.2018b. Isochronous stratigraphic division of fluvial facies based on mid term cycle flood surface. Journal of Jilin University: Earth Science Edition, 48(5): 1316-1329] [7] 冯圣伦,赵晓明. 2018. 平移型点坝形成机理及沉积特征. 第十五届全国古地理学及沉积学学术会议摘要集. 成都: 398. [Feng S L,Zhao X M.2018. Formation mechanism and sedimentary characteristics of point dam with translation. Summary of the 15th National Conference on palaeogeography and Sedimentology. Chengdu: 398] [8] 胡光义,陈飞,范廷恩,孙立春,赵春明,高云峰,王晖,宋来明. 2014. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 32(3): 586-592. [Hu G Y,Chen F,Fan T E,Sun L C,Zhao C M,Gao Y F,Wang H,Song L M.2014. Analysis of fluvial facies compound sandbody architecture of the Neogene Minghuazhen formation of S oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 32(3): 586-592] [9] 胡光义,陈飞,范廷恩,胡宇霆. 2017a.基于复合砂体构型样式的河流相储层细分对比方法. 大庆石油地质与开发, 36(2): 12-18. [Hu G Y,Chen F,Fan T E,Hu Y T.2017a.Subdividing and comparing method of the fluvial facies reservoirs based on the complex sandbody architectures. Petroleum Geology and Oilfield Development in Daqing, 36(2): 12-18] [10] 胡光义,范廷恩,陈飞,井涌泉,王晖,宋来明. 2017b. 从储层构型到“地震构型相”: 一种河流相高精度概念模型的表征方法. 地质学报, 91(2): 465-478. [Hu G Y,Fan T E,Chen F,Jing Y Q,Wang H,Song L M.2017b.From reservoir architecture to seismic architecture facies: characteristic method of a high-resolution fluvial facies model. Acta Geologica Sinica, 91(2): 465-478] [11] 胡光义,范廷恩,梁旭,宋来明,井涌泉,陈飞,肖大坤. 2018a.河流相储层复合砂体构型概念体系、表征方法及其在渤海油田开发中的应用探索. 中国海上油气, 30(1): 89-98. [Hu G Y,Fan T E,Liang X,Song L M,Jing Y Q,Chen F,Xiao D K.2018a.Concept system and characterization method of compound sandbody architecture in fluvial reservoir and its application exploration in development of Bohai oilfield. China Offshore Oil and Gas, 30(1): 89-98] [12] 胡光义,范廷恩,陈飞,井涌泉,宋来明,梁旭,肖大坤. 2018b. 复合砂体构型理论及其生产应用. 石油与天然气地质, 39(1): 1-10. [Hu G Y,Fan T E,Chen F,Jing Y Q,Song L M,Liang X,Xiao D K.2018b. Theory of composite sand body architecture and its application to oilfield development. Oil and Gas Geology, 39(1): 1-10] [13] 胡光义,肖大坤,范廷恩,宋来明,陈飞,井涌泉,高玉飞. 2019. 河流相储层构型研究新理论、新方法: 海上油田河流相复合砂体构型概念、内容及表征方法. 古地理学报, 21(1): 145-161. [Hu G Y,Xiao D K,Fan T E,Song L M,Chen F,Jing Y Q,Gao Y F.2019. New theory and method of fluvial reservoir architecture study: concepts,contents and characterization of offshore oilfield fluvial compound sandbody architecture. Journal of Palaeogeography(Chinese Edition), 21(1): 145-161] [14] 李思田,杨士恭,林畅松. 1992. 论沉积盆地的等时地层格架和基本建造单元. 沉积学报, 10(4): 11-22. [Li S T,Yang S G,Lin C S.1992. On the chronostratigraphic framework and basic building blocks of sedimentary basin. Acta Sedimentologica Sinica, 10(4): 11-22] [15] 马世忠,吕桂友,闫百泉,范广娟. 2008a.河道单砂体“建筑结构控三维非均质模式”研究. 地学前缘, 15(1): 57-64. [Ma S Z,Lü G Y,Yan B Q,Fan G J.2008a.Research on three-dimensional heterogeneous model of channel sandbody controlled by architecture. Earth Science Frontiers, 15(1): 57-64] [16] 马世忠,孙雨,范广娟,郝兰英. 2008b.地下曲流河道单砂体内部薄夹层建筑结构研究方法. 沉积学报, 26(4): 632-639. [Ma S Z,Sun Y,Fan G J,Hao L Y.2008b.The method for studying thin inerbed architecture of burial meandering channel sandbody. Acta Sedi mentologica Sinica, 26(4): 632-639] [17] 王海峰,范廷恩,宋来明,胡光义,梁旭,王帅,刘向南. 2017. 高弯度曲流河砂体规模定量表征研究. 沉积学报, 35(2): 279-289. [Wang H F,Fan T E,Song L M,Hu G Y,Liang X,Wang S,Liu X N.2017. Quantitative characterization study on sand body scale in high sinuosity meandering river. Acta Sedimentologica Sinica, 35(2): 279-289] [18] 王海峰,范廷恩,胡光义,何明薇,张显文,高玉飞. 2020. 海上油田开发中后期砂岩储层构型剖析与表征. 海洋地质与第四纪地质, 40(1): 114-125. [Wang H F,Fan T E,Hu G Y,He M W,Zhang X W,Gao Y F.2020. Analysis and characterization of sandstone reservoir architecture in middle and late stages of offshore oilfield development. Marine Geology & Quaternary Geology, 40(1): 114-125] [19] 吴胜和,岳大力,刘建民,束青林,范峥,李宇鹏. 2008. 地下古河道储层构型的层次建模研究. 中国科学(D辑),38(增刊): 111-121. [Wu S H,Yue D L,Liu J M,Shu Q L,Fan Z,Li Y P.2008. Study on hierarchical modeling of reservoir configuration in underground ancient river. Science in China(Series D),38(z1): 111-121] [20] 吴胜和,纪友亮,岳大力,印森林. 2013. 碎屑沉积地质体构型分级方案探讨. 高效地质学报, 19(1): 12-22. [Wu S H,Ji Y L,Yue D L,Yin S L.2013. Discussion on hierarchical scheme of architectural units in clastic deposits. Geological Journal of China Universities, 19(1): 12-22] [21] 吴元燕,陈碧珏. 1996. 油矿地质学. 北京: 石油工业出版社,111-124. [Wu Y Y,Chen B J.1996. Oilfield Geology. Beijing: Petroleum Industry Press,111-124] [22] 肖大坤,胡光义,范廷恩,陈飞,董建华,高玉飞,梁旭. 2018. 现代曲流河沉积原型建模及构型级次特征探讨: 以海拉尔河、潮白河为例. 中国海上油气, 30(1): 118-126. [Xiao D K,Hu G Y,Fan T E,Chen F,Dong J H, Gao Y F, Liang X.2018. Prototype model of modern fluvial deposits and discussion on architectural units: a case study of Hailar River and Chaobai River. China Offshore Oil and Gas, 30(1): 118-126] [23] 熊琦华,王志章,吴胜和,徐樟有,侯加根. 2010. 现代油藏地质学理论与技术篇. 北京: 科学出版社,13-18. [Xiong Q H,Wang Z Z,Wu S H,Xu Z Y,Hou J G.2010. Theory and Technology of Modern Reservoir Geology. Beijing: Science Press,13-18] [24] 闫百泉,马世忠,王龙,张全恒. 2008. 曲流点坝内部剩余油形成与分布规律物理模拟. 地学前缘, 15(1): 65-70. [Yan B Q,Ma S Z,Wang L,Zhang Q H.2008. The formation and distribution of residual oil in meander point bar by physical modeling. Earth Science Frontiers, 15(1): 65-70] [25] 姚光庆,马正,赵彦超. 1994. 储层描述尺度与储层地质模型分级. 石油实验地质, 16(4): 403-408. [Yao G Q,Ma Z,Zhao Y C.1994. Measures on reservoir description corresponding with the graduation of geological reservoir models. Experimental Petroleum Geology, 16(4): 403-408] [26] 于兴河,马兴祥,穆龙新,贾爱林. 2004. 辫状河储层地质模式及层次界面分析. 北京: 石油工业出版社,60-106. [Yu X H,Ma X X,Mu L X,Jia A L.2004. Geological Model and Interface Analysis of Braided River Reservoir. Beijing: Petroleum Industry Press,60-106] [27] 岳大力,吴胜和,刘建民. 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. [Yue D L,Wu S H,Liu J M.2007. An accurate method for anatomizing architecture of subsurface reservoir in point bar of meandering rive. Acta Petrolei Sinica, 28(4): 99-103] [28] 岳大力,陈德坡,徐樟有,吴胜和,范峥,蒋婷婷. 2009. 济阳坳陷孤东油田曲流河河道储集层构型三维建模. 古地理学报, 11(2): 233-240. [Yue D L,Chen D P,Xu Z Y,Wu S H,Fan Z,Jiang T T.2009. Channel reservoir architecture 3D modeling of meandering fluvial reservoir in Gudong oilfield,Jiyang Depression. Journal of Palaeo geography(Chinese Edition), 11(2): 233-240] [29] 曾祥平. 2010. 储集层构型研究在油田精细开发中的应用. 石油勘探与开发, 37(4): 483-489. [Zeng X P.2010. Application of reservoir structure research in the fine exploitation of oilfields. Petroleum Exploration and Development, 37(4): 483-489] [30] 张昌民. 1992. 储层研究中的层次分析法. 石油与天然气地质, 13(3): 344-350. [Zhang C M.1992. Hierarchy analysis in reservoir researches. Oil and Gas Geology, 13(3): 344-350] [31] 张显文,胡光义,范廷恩,井涌泉,王海峰,于斌. 2018. 河流相储层结构地震响应分析与预测. 中国海上油气, 30(1): 110-117. [Zhang X W,Hu G Y,Fan T E,Jing Y Q,Wang H F,Yu B.2018. Seismic response analysis and prediction for fluvial reservoir architecture. China Offshore Oil and Gas, 30(1): 110-117] [32] 郑荣才,彭军,吴朝荣. 2001. 陆相盆地基准面旋回的级次划分和研究意义. 沉积学报, 19(2): 249-255. [Zheng R C,Peng J,Wu C R.2001. Grade division of base-level cycles of terrigenous basin and its implications. Acta Sedimentologica Sinica, 19(2): 249-255] [33] Allen J R L.1966. On bed forms and paleocurrents. Sedimentary, 6(3): 153-190. [34] Allen J R L.1983. Studies in fluviatile sedimentation: bars,bar complexes and sandstone sheets(lower-sinuosity braided streams)in the Brownstones(L. Devonian),Welsh Borders. Sedimentary Geology, 33(4): 237-293. [35] Brookfield M E.1977. The origin of bounding surfaces in ancient aeolian sandstones. Sedimentology, 24(3): 303-332. [36] Cross T A.1988. Controls on coal distribution in transgressive-regressive cycles,Upper Cretaceous,Western Interior, U.S.A. In: Wilgaus C K, et al. Sea-level changes: an intergrated approach: SEPM Sepcial Publication,42: 371-380. [37] Jackson R G.1975. Hierarchical attributes and unifying model of bed forms composed of cohesionless material and produced by shearing flow. Geological Society of America Bulletin, 86(11): 1523-1533. [38] Leeder M R.1973. Fluviatile fining-upwards cycles and the magnitude of palaeochannels. Geological Magazine, 110(3): 265-276. [39] Miall A D.1988. Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta Formation(Lower Jurassic),Southwest Colorado. Sedimentary Geology, 55(3-4): 233-262. [40] Miall A D.1996. The Geology of Fluvial Deposits. Springer Verlag Berlin Heidelberg: 75-178. [41] Pettijohn F J,Potter P E,Siever R.1972. Sand and Sandstone. Springer,Berlin Heidelberg,New York. [42] Vail P R.1987. Seismic stratigraphy interpretation using sequence stratigraphy. Part 1: seismic stratigraphy interpretation procedure. Atlas of seismic stratigraphy. AAPG,Studies in Geology, 27: 1-10. [43] Wagoner J C V,Mitchum R M,Campion K M,Rahmanian V D.1990. Siliciclastic sequence stratigraphy in well logs,cores,and outcrops. AAPG Methods Exploration Series,(7): 10-45.