Sedimentary characteristics and palaeoenvironmental significance of the Permian-Triassic transition at Niejiagou section of Shaanxi in eastern Qinling
LI Feiyang1,2, ZHANG Lijun1,2, LI Tairan1, YANG Qiqi1, NIU Yongbin1,2, SONG Huibo1,2
1 Institute of Resources and Environment,Key Laboratory of Biogenic Trace and Sedimentary Minerals of Henan Province, Henan Polytechnic University,Henan Jiaozuo 454003, China; 2 Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region, Henan Jiaozuo 454003, China
Abstract The marine carbonate strata of the Permian-Triassic transition were found in the Niejiagou section of Zhen'an,Shaanxi. It records the succession of biota and environmental changes of shallow-marine carbonate platform in the Permian-Triassic transition,and is a perfect area for studying the depositional response and palaeoenvironmental changes before and after the end-Permian mass extinction. Based on the detailed analysis of carbonate microfacies and biology combination in the Permian-Triassic transition of the Neijiagou section,11 microfacies types are identified,including patched agglomerates,stromatolites,oolitic-layered stromatolites,foraminiferal grainstone,algal-crinoid grainstone,wackestone containing coated and eroded bone debris particles,oolitic grainstone,aggregate grainstone,oolitic wackestone,mudstone and micrite. According to the characteristics of carbonate microfacies and sedimentary indicators,marginal shoal facies,open platform facies and restricted platform facies are divided in the Permian-Triassic transition. The microfacies characteristics reflect frequent sedimentary microfacies changes in the Permian-Triassic transition. The biological succession and stratigraphic sequence of the Permian-Triassic transition in the Niejiagou section have good uniformity correlation with other sections in South China. After the end-Permian mass extinction,low biodiversity and biological abundance,e.g.,small bivalves and crinoid,occur in the shallow-marine carbonate platform in the Early Triassic. The special microbial sedimentary structures dominated around the mass extinction event boundary. Afterwards,the microbialites disappeared and the bioclastic limestone reoccupied. This research can provide new understanding for the coevolution of organisms and the environment caused by the end-Permian mass extinction.
Fund:National Natural Sicence Foundation of China(No.41602112),the Natural Science Foundation of Henan(No.212300410349),and the Fundamental Research Funds for the Universities of Henan Province(No. NSFRF200340),and the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(No.2022-05)
Corresponding Authors:
ZHANG Lijun,born in 1982,an associate professor of Henan Polytechnic University,is engaged in ichnology and sedimentology. E-mail: Ljzhanghpu@gmail.com.
About author: LI Feiyang,born in 1993,is a master degree candidate. He is engaged in sedimentology. E-mail: 1169006628@qq.com.
Cite this article:
LI Feiyang,ZHANG Lijun,LI Tairan et al. Sedimentary characteristics and palaeoenvironmental significance of the Permian-Triassic transition at Niejiagou section of Shaanxi in eastern Qinling[J]. JOPC, 2022, 24(4): 649-662.
LI Feiyang,ZHANG Lijun,LI Tairan et al. Sedimentary characteristics and palaeoenvironmental significance of the Permian-Triassic transition at Niejiagou section of Shaanxi in eastern Qinling[J]. JOPC, 2022, 24(4): 649-662.
[1] 白斌,周立发,曹建科. 2002. 镇安西口地区二叠纪—三叠纪地层格架与地层模型. 沉积与特提斯地质, 22(4): 44-49. [Bai B,Zhou L F,Cao J K.2002. Stratigraphic framework and model for the Permian-Triassic strata in the Xikou region,Shaanxi. Sedimentary Geology and Tethyan Geology, 22(4): 44-49] [2] 包洪平,杨承运. 1999. 碳酸盐岩微相分析及其在岩相古地理研究中的意义. 岩相古地理, 19(6): 59-64. [Bao H P,Yang C Y.1999. The carbonate microfacies analysis and its applications to sedimentary facies and palaeogeographic research. Sedimentary Facies and Palaeogeography, 19(6): 59-64] [3] 曹长群,王伟,金玉. 2002. 浙江煤山二叠—三叠系界线附近碳同位素变化. 科学通报, 47(4): 302-305. [Cao C Q,Wang W,Jin Y.2002. Carbon isotopic excursions across the Permian-Triassic boundary in the Meishan section,Zhejiang Province,China. Chinese Science Bulletin, 47(4): 302-305] [4] 曹长群,郑全锋. 2009. 煤山二叠纪—三叠纪过渡期事件地层时序的微观地层记录. 中国科学: 地球科学, 39(4): 481-487. [Cao C Q,Zheng Q F.2009. Geological event sequences of the Permian-Triassic transition recorded in the microfacies in Meishan. Science China: Earth Science, 39(4): 481-487] [5] 陈衍景. 2010. 秦岭印支期构造背景、岩浆活动及成矿作用. 中国地质, 37(4): 854-865. [Chen Y J.2010. Indosinian tectonic setting,magmatism and metallogenesis in Qinling orogeny. Geology in China, 37(4): 854-865] [6] 程成,李双应,曹婷丽. 2017. 南秦岭陕西镇安西口二叠系剖面牙形刺生物地层. 微体古生物学报, 34(1): 16-32. [Cheng C,Li S Y,Cao T L.2017. Permian conodonts at the Xikou section,Zhen'an,Shaanxi Province,NW China. Acta Micropalaeontologica Sinica, 34(1): 16-32] [7] 郭峰. 2011. 碳酸盐岩沉积学. 北京: 石油工业出版社,1-396. [Guo F.2011. Carbonate Sedimentology. Beijing: Petroleum Industry Press,1-396] [8] 李三忠,张国伟,李亚林,赖绍聪,李宗会. 2002. 秦岭造山带勉略缝合带构造变形与造山过程. 地质学报, 76(4): 469-483. [Li S Z,Zhang G W,Li Y L, Lai S C,Li Z H.2002. Deformation and orogeny of the Mian-Lue suture zone in the Qinling orogenic belt. Acta Geologica Sinica, 76(4): 469-483] [9] 刘建波,江崎洋一,杨守仁,足立奈津子. 2007. 贵州罗甸二叠纪末生物大灭绝事件后沉积的微生物岩的时代和沉积学特征. 古地理学报, 9(5): 473-486. [Liu J B,Ezaki Y,Yang S R,Adachi N.2007. Age and sedimentology of microbialites after the end-Permian mass extinction in Luodian,Guizhou Province. Journal of Palaeogeography(Chinese Edition), 9(5): 473-486] [10] 裴放,王凌云. 2006. 东秦岭古生代生物古地理. 古地理学报, 8(1): 1-15. [Pei F,Wang L Y.2006. Biopalaeogeography of the Paleozoic in East Qinling Mountains. Journal of Palaeogeography(Chinese Edition), 8(1): 1-15] [11] 戎嘉余,黄冰. 2014. 生物大灭绝研究三十年. 中国科学: 地球科学, 44(3): 377-404. [Rong J Y,Huang B.2014. Study of mass extinction over the past thirty years: a synopsis. Science China: Earth Science, 44(3): 377-404] [12] 宋海军,童金南,熊炎林,孙冬英,田力,宋虎跃. 2012. δ13Ccarb-深度梯度的剧增与二叠纪末生物大灭绝. 中国科学: 地球科学, 42(8): 1182-1191. [Song H J,Tong J N,Xiong Y L,Sun D Y,Tian L,Song H Y.2012. The large increase of the δ13Ccarb-depth gradient and end-Permian mass extinction. Science China: Earth Science, 42(8): 1182-1191] [13] 宋海军,童金南. 2016. 二叠纪—三叠纪之交生物大灭绝与残存. 地球科学, 41(6): 901-918. [Song H J,Tong J N.2016. Mass extinction and survival during the Permian-Triassic crisis. Earth Science, 41(6): 901-918] [14] 唐永忠,朱迎堂. 2007. 南秦岭古生代沉积盆地构造活动—海平面变化与沉积响应. 沉积学报, 25(5): 653-662. [Tang Y Z,Zhu Y T.2007. Tectonic activity, sea level change and sedimentary response of Paleozoic basins in South Qinling Mountains. Acta Sedimentologica Sinica, 25(5): 653-662] [15] 王永标,童金南,王家生,周修高. 2005. 华南二叠纪末大灭绝后的钙质微生物岩及古环境意义. 科学通报, 50(6): 552-558. [Wang Y B,Tong J N,Wang J S,Zhou X G.2005. Calcareous microbiolites after the end-Permian mass extinction in South China and their paleoenvironmental significance. Chinese Science Bulletin, 50(6): 552-558] [16] 吴亚生,姜红霞,Yang Wan,范嘉松. 2007. 二叠纪—三叠纪之交缺氧环境的微生物和微生物岩. 中国科学: 地球科学, 37(5): 618-628. [Wu Y S,Jiang H X,Yang W,Fan J S.2007. Microbialite of anoxic condition from Permian-Triassic transition in Guizhou,China. Science China: Earth Science, 37(5): 618-628] [17] 殷鸿福,宋海军. 2013. 古、中生代之交生物大灭绝与泛大陆聚合. 中国科学: 地球科学, 43(10): 1539-1552. [Yin H F,Song H J.2013. Mass extinction and Pangea integration during the Paleozoic-Mesozoic transition. Science China: Earth Science, 43(10): 1539-1552] [18] 余素玉. 1989. 化石碳酸盐岩微相. 北京: 地质出版社,1-167. [Yu S Y.1989. Fossil Carbonate Microfacies. Beijing: Geological Publishing House,1-167] [19] 张国伟,郭安林,董云鹏,姚安平. 2019. 关于秦岭造山带. 地质力学学报, 25(5): 746-768. [Zhang G W,Guo A L,Dong Y P,Yao A P.2019. Rethinking of the Qinling Orogen. Journal of Geomechanics, 25(5): 746-768] [20] 张国伟,孟庆任,于在平,孙勇,周鼎武,郭安林. 1996. 秦岭造山带的造山过程及其动力学特征. 中国科学: 地球科学, 26(3): 193-200. [Zhang G W,Meng Q R,Yu Z P,Sun Y,Zhou D W,Guo A L.1996. Orogenic process and dynamic characteristics of Qinling orogenic belt. Science China: Earth Science, 26(3): 193-200] [21] 赵俊兴,陈洪德,向芳. 2003. 高分辨率层序地层学方法在沉积前古地貌恢复中的应用. 成都理工大学学报(自然科学版), 30(1): 76-81. [Zhao J X,Chen H D,Xiang F.2003. The possibility of rebuilding paleogeomorphology before basin deposition by high resolution sequence stratigraphy. Journal of Chengdu University of Technology(Science and Technology Edition), 30(1): 76-81] [22] Baud A,Magaritz M,Holser W T.1989. Permian-Triassic of the Tethys: carbon isotope studies. Geologische Rundschau, 78(2): 649-677. [23] Bernhard J M,Bowser S S.2010. Peroxisome proliferation in foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure?Journal of Eukaryotic Microbiology, 55(3): 135-144. [24] Bing H,Harper D,Zhan R,Zhan R B,Rong J Y.2010. Can the Lilliput Effect be detected in the brachiopod faunas of South China following the Terminal Ordovician Mass Extinction?Palaeogeography, Palaeoclimatology, Palaeoecology, 285(3-4): 277-286 [25] Brand U,Posenato R,Came R,Affek H,Angiolini L,Azmy K,Farabegoli E.2012. The end-Permian mass extinction: a rapid volcanic CO2 and CH4-climatic catastrophe. Chemical Geology, 322-323: 121-144. [26] Brennecka G A,Herrmann A D,Algeo T J,Anbar A D.2011. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proceedings of the National Academy of Sciences, 108(43): 17631-17634. [27] Chen J,Song H J,He W H,Tong J N,Wang F Y,Wu S B.2019. Size variation of brachiopods from the Late Permian through the Middle Triassic in South China: evidence for the Lilliput Effect following the Permian-Triassic extinction. Palaeogeography,Palaeoclimatology,Palaeoecology, 519: 248-257. [28] Clapham M E,Bottjer D J.2007. Prolonged Permian-Triassic ecological crisis recorded by molluscan dominance in Late Permian offshore assemblages. Proceedings of the National Academy of Sciences of the United States of America, 104(32): 12971-12975. [29] Dong Y P,Zhang X N,Liu X M,Li W,Chen Q,Zhang G W,Zhang H F,Yang Z,Sun S S,Zhang F F.2015. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. Journal of Asian Earth Sciences, 104: 84-98. [30] Dunham R J.1962. Classification of carbonate rocks according to depositional texture. In: Ham W E(ed). Classification of Carbonate Rocks. AAPG, Tulsa,108-121. [31] Erwin D H.1994. The Permo-Triassic extinction. Nature, 367(6460): 231-236. [32] Ezaki Y,Liu J B,Adachi N.2004. Earliest Triassic microbialite micro- to megastructures in the Huaying area of Sichuan Province,South China: implications for the nature of oceanic conditions after the end-Permian extinction. Palaios, 19(4): 416-417 [33] Fan J X,Shen S Z,Erwin D H,Sadler P M,MacLeod N,Cheng Q M,Hou X D,Yang J,Wang X D,Wang Y,Zhang H,Chen X,Li G X,Zhang Y C,Shi Y K,Yuan D X,Chen Q,Zhang L N,Li C,Zhao Y Y.2020. A high-resolution summary of Cambrian to Early Triassic marine invertebrate biodiversity. Science, 367(6475): 272-277. [34] Flügel E.2010. Microfacies of Carbonate Rocks: Analysis,Interpretation and Application. New York: Springer,1-984. [35] Folk R L.1959. Practical petrographic classification of limestones. AAPG Bulletin, 43(1): 1-38. [36] Grzymski J,Schofield O M,Falkowski P G,Bernhard J M.2002. The function of plastids in the deep-sea benthic foraminifer,Nonionella stella. Limnology and Oceanography, 47(6): 1569-1580 [37] Hull P.2015. Life in the aftermath of mass extinctions. Current Biology, 25(19): 941-952. [38] Hunt G,Roy K.2006. Climate change,body size evolution,and Cope's Rule in deep-sea ostracodes. Proc Natl Acad Sci USA, 103(5): 1347-1352. [39] Isozaki Y.1997. Permo-Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science, 276(5310): 235-238. [40] Jin C S,Li C,Peng X F,Cui H,Shi W,Zhang Z H,Luo G M,Xie S C.2014. Spatiotemporal variability of ocean chemistry in the Early Cambrian,South China. Science China: Earth Sciences, 57(4): 579-591. [41] Jin Y G,Wang Y,Wang W,Shang Q H,Cao C Q,Erwin D H.2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289(5478): 432-436. [42] Kaiho K.1998. Global climatic forcing of deep-sea benthic foraminiferal test size during the past 120 M.Y. Geology, 26(6): 491-494. [43] Kershaw S,Tang H,Li Y,Guo L.2018. Oxygenation in carbonate microbialites and associated facies after the end-Permian mass extinction: problems and potential solutions. Journal of Palaeogeography, 7(1): 32-47. [44] Kiessling W,Simpson C.2011. On the potential for ocean acidification to be a general cause of ancient reef crises. Global Change Biology, 17(1): 56-67. [45] Kuroyanagi A,Kawahata H,Suzuki A,Kawahata H,Suzuki A,Fujita K,Irie T.2009. Impacts of ocean acidification on large benthic foraminifers: results from laboratory experiments. Marine Micropaleontology, 73(3-4): 190-195. [46] Lee J,Lee H S,Chen J,Woo J,Chough S K.2014. Calcified microbial reefs in Cambrian Series 2,North China Platform: implications for the evolution of Cambrian calcified microbes. Palaeogeography,Palaeoclimatology, Palaeoecology, 403: 30-42. [47] Lehrmann D J.1999. Early Triassic calcimicrobial mounds and biostromes of the Nanpanjiang Basin,South China. Geology, 27(4): 359-362. [48] Leutenegger S,Hansen H J.1979. Ultrastructural and radiotracer studies of pore function in foraminifera. Marine Biology, 54(1): 11-16. [49] Liu X,Song H,Bond D P G,Tong J,Benton M J.2020. Migration controls extinction and survival patterns of foraminifers during the Permian-Triassic crisis in South China. Earth-Science Reviews, 209: 103329. [50] Luo G M,Lai X L,Feng Q L,Jiang H S,Paul W,Zhang K X.2008. End-Permian conodont fauna from Dongpan section: correlation between the deep-and shallow-water facies. Science China: Earth Science, 51(11): 1611-1622. [51] Meng Y Y,Feng Q L,He W H,Gu S Z,Zhang F.2004. Sedimentological characteristics of the deep-water Paleozoic-Mesozoic interval in the Liuqiao region of Guangxi and its signification. Earth Science, 29: 25-36. [52] Meyer K M,Yu M,Jost A B,Kelleya B M,Paynea J L.2011. δ13C evidence that high primary productivity delayed recovery from end-Permian mass extinction. Earth and Planetary Science Letters, 302(3-4): 378-384. [53] Qiu Z,Wang Q C,Zou C N,Yan D T,Wei H Y.2014. Transgressive-regressive sequences on the slope of an isolated carbonate platform(Middle-Late Permian,Laibin,South China). Facies, 60(1): 327-345 [54] Raup D M.1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206(4415): 217-218. [55] Riding R.2006. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sedimentary Geology, 185(3): 229-238. [56] Shen J,Feng Q L,Algeo T J,Li C,Planavsky N J,Zhou L,Zhang M L.2016. Two pulses of oceanic environmental disturbance during the Permian-Triassic boundary crisis. Earth and Planetary Science Letters, 443: 139-152. [57] Shen J,Chen J B,Algeo T J,Yuan S L,Feng Q L,Yu J X,Zhou L,O'Connell B,Planavsky N J.2019. Evidence for a prolonged Permian-Triassic extinction interval from global marine mercury records. Nature Communications, 10(1): 1563. [58] Shen S Z,Shi G R.2009. Latest Guadalupian brachiopods from the Guadalupian/Lopingian boundary GSSP section at Penglaitan in Laibin,Guangxi,South China and implications for the timing of the pre-Lopingian crisis. Palaeoworld, 18(2): 152-161. [59] Song H,Tong J,Chen Z Q.2011. Evolutionary dynamics of the Permian-Triassic foraminifer size: evidence for Lilliput Effect in the end-Permian Mass Extinction and its aftermath. Palaeogeography,Palaeoclimatology,Palaeoecology, 308(1-2): 98-110. [60] Song H J,Wignall P B,Tong J N,Yin H F.2013. Two pulses of extinction during the Permian-Triassic crisis. Nature Geoscience, 6(1): 52-56. [61] Song H J,Wignall P B,Chu D L,Tong J N,Sun Y D,Song H Y,He W H,Tian L.2015. Anoxia/high temperature double whammy during the Permian-Triassic marine crisis and its aftermath. Scientific Reports, 4(1): 4132. [62] Song H J,Wignall P B,Dunhill A M.2018. Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction. Science Advances, 4(10): 5091. [63] Stanley S M.2016. Estimates of the magnitudes of major marine mass extinctions in earth history. Proceedings of the National Academy of Sciences, 113(42): E6325-E6334. [64] Sun Y D,Joachimski M M,Wignall P B,Yan C B,Chen Y L,Jiang H H,Wang L N,Lai X L.2012. Lethally hot temperatures during the Early Triassic greenhouse. Science, 338(6105): 366-370. [65] Tian L,Tong J N,Xiao Y F,Benton M J,Song H Y,Song H J,Liang L,Wu K,Chu D L,Algeo T J.2019. Environmental instability prior to end-Permian mass extinction reflected in biotic and facies changes on shallow carbonate platforms of the Nanpanjiang Basin(South China). Palaeogeography,Palaeoclimatology, Palaeoecology, 519: 23-36. [66] Twitchett R J.2007. The Lilliput Effect in the aftermath of the end-Permian Extinction Event. Palaeogeography,Palaeoclimatology, Palaeoecology, 252(1-2): 132-144. [67] Wu Y S,Yu G L,Jiang H X,Liu L J,Zhao R.2016. Role and lifestyle of calcified cyanobacteria(Stanieria)in Permian-Triassic boundary microbialites. Palaeogeography,Palaeoclimatology, Palaeoecology, 448: 39-47. [68] Yin H F,Feng Q L,Lai X L,Baud A,Tong J N.2007. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian-Triassic boundary. Global and Planetary Change, 55(1): 1-20. [69] Yin H F,Xie S C,Luo G M,Algeo T J,Zhang K X.2012. Two episodes of environmental change at the Permian-Triassic boundary of the GSSP section Meishan. Earth-Science Reviews, 115(3): 163-172. [70] Zhang X Y,Wang W Q,Yuan D X,Zhang H,Zheng Q F.2020. Stromatolite-dominated microbialites at the Permian-Triassic boundary of the Xikou section on South Qinling Block,China. Palaeoworld, 29(1): 126-136. [71] Zicgler P A.1988. Evolution of the Arctic-North Atlantic and the western Tethys. New York: American Association of Petroleum Geologists,1-198.