Sedimentary characteristics and development model of the Middle and Lower Cambrian evaporite in Tarim Basin
WANG Shan1, CAO Yinghui1, YAN Lei1, DU Dedao1, MA Debo1, ZHANG Xiang2, CHEN Zhiyong1, ZHOU Hui1, YANG Min1, BAI Ying1
1 PetroChina Research Institute of Petroleum Exploration and Development,Beijing 100083,China; 2 Institute of Sedimentary Geology,Chengdu University of Technology,Chengdu 610059,China
Abstract The Middle and Lower Cambrian is an important exploration field in Tarim Basin. Development of the Middle and Lower Cambrian evaporites is one of the key factors to successful Cambrian subsalt exploration and plays an important role in oil and gas accumulation. Therefore,the distribution characteristics and development model of the Middle and Lower Cambrian evaporite are of great significance for oil and gas exploration. Based on the regional geological background,core slice observation and drilling data analysis,this study identifies rock types of the Middle and Lower Cambrian evaporite in Tarim Basin,depicts its spatial distribution and establishes its formative model. The study shows: (1)The evaporites of the Middle and Lower Cambrian in Tarim Basin are mainly salt and gypsum rocks. The Lower Cambrian evaporite is thin and only distributed in the west of the basin without salt accumulation center. The thickness and distribution range of the Middle Cambrian evaporite both increased. Taking Bachu uplift as the salt accumulation center,it is distributed in a large area in Bachu-Tazhong-Tabei area in thick layers. (2)In the Lower Cambrian Xiaoerbulak Formation,the origin of the evaporite was“Sabkha”and“shallow-water evaporative lagoon”in a carbonate ramp. In the Wusongger Formation,the origin of the evaporite was“Sabkha”in a restricted platform. In the Middle Cambrian,the basin was periodically isolated from an open sea and the depositional environment evolved into a drying-evaporative platform. The evaporite distribution had a sedimentary characteristics of salt-gypsum-dolomite-mudstone from inside to outside. The conclusions could deepen the understanding of the dolostone-evaporite paragenesis system in Tarim Basin,providing new reference information for the prediction of Cambrian high-quality caprock and the distribution of effective reservoir cap assemblages in the Tarim Basin. Meanwhile,this study provides an important theoretical support for the Cambrian subsalt exploration.
Fund:Science and Technology Project of PetroChina Company Limited(No.2021DJ05)
About author: WANG Shan,born in 1986,senior engineer,is engaged in researches on carbonate sedimentology and reservoir. E-mail: wangshanchina@petroChina.com.
Cite this article:
WANG Shan,CAO Yinghui,YAN Lei et al. Sedimentary characteristics and development model of the Middle and Lower Cambrian evaporite in Tarim Basin[J]. JOPC, 2023, 25(4): 889-905.
WANG Shan,CAO Yinghui,YAN Lei et al. Sedimentary characteristics and development model of the Middle and Lower Cambrian evaporite in Tarim Basin[J]. JOPC, 2023, 25(4): 889-905.
[1] 包洪平,杨承运,黄建松. 2004. “干化蒸发”与“回灌重溶”: 对鄂尔多斯盆地东部奥陶系蒸发岩成因的新认识. 古地理学报, 6(3): 279-288. [Bao H P,Yang C Y,Huang J S.2004. “Evaporation drying”and “reinfluxing and redissolving”: a new hypothesis concerning formation of the Ordovician evaporites in eastern Ordos Basin. Journal of Palaeogeography(Chinese Edition), 6(3): 279-288] [2] 博歇特 H,缪尔 R O,著. 袁见齐张瑞锡张昌明,译. 1976. 盐类矿床: 蒸发岩的成因、变质和变形. 北京: 地质出版社, 32-51. [Borchert H,Muir R O.
Tanslated by Yuan J Q, Zhang R X, Zhang C M, 1976. Salt Deposits: The Origin Metamorphism and Detormation of Evaporiter. Beijing: Geological Publishing House, 32-51] [3] 曹颖辉,王珊,张亚金,杨敏,闫磊,赵一民,张君龙,王显东,周肖肖,王洪江. 2019. 塔里木盆地古城地区下古生界碳酸盐岩油气地质条件与勘探潜力. 石油勘探与开发, 46(6): 1099-1114. [Cao Y H,Wang S,Zhang Y J,Yang M,Yan L,Zhao Y M,Zhang J L,Wang X D,Zhou X X,Wang H J.2019. Petroleum geological conditions and exploration potential of Lower Paleozoic carbonate rocks in Gucheng area,Tarim Basin,China. Petroleum Exploration and Development, 46(6): 1099-1114] [4] 杜金虎,潘文庆,2016. 塔里木盆地寒武系盐下白云岩油气成藏条件与勘探方向. 石油勘探与开发, 43(3): 327-339. [Du J H,Pan W Q.2016. Accumulation conditions and play targets of oil and gas in the Cambrian subsalt dolomite,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 327-339] [5] 冯增昭,鲍志东,吴茂炳,金振奎,时晓章. 2006. 塔里木地区寒武纪岩相古地理. 古地理学报, 8(4): 427-439. [Feng Z Z,Bao Z D,Wu M B,Jin Z K,Shi X Z.2006. Lithofacies palaeogeography of the Cambrian in Tarim area. Journal of Palaeogeography(Chinese Edition), 8(4): 427-439] [6] 管树巍,张春宇,任荣,张水昌,吴林,王雷,马培领,韩长伟. 2019. 塔里木北部早寒武世同沉积构造: 兼论寒武系盐下和深层勘探. 石油勘探与开发, 46(6): 1075-1086. [Guan S W,Zhang C Y,Ren R,Zhang S C,Wu L,Wang L,Ma P L,Han C W.2019. Early Cambrian syndepositional structural of the northern Tarim Basin and a discussion of Cambrian subsalt and deep exploration. Petroleum Exploration and Development, 46(6): 1075-1086] [7] 郭超,张志勇,吴林,项敦峰,王楠,肖文交. 2022. 中新生代天山剥蚀与塔里木盆地北缘沉积耦合过程: 新疆库车河剖面的低温热年代学证据. 地球科学, 47(9): 3417-3430. [Guo C,Zhang Z Y,Wu L,Xiang D F,Wang N,Xiao W J.2022. Mesozoic-Cenozoic Coupling process of Tianshan denudation and sedimentation in the northern margin of the Tarim Basin: evidence from low-temperature thermochronology(Kuqa River Section,Xinjiang). Earth Science, 47(9): 3417-3430] [8] 何治亮,张军涛,丁茜,尤东华,彭守涛,朱东亚,钱一雄. 2017. 深层—超深层优质碳酸盐岩储层形成控制因素. 石油与天然气地质, 38(4): 633-644,763. [He Z L,Zhang J T,Ding Q,You D H,Peng S T,Zhu D Y,Qian Y X.2017. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs. Oil & Gas Geology, 38(4): 633-644,763] [9] 胡安平,沈安江,杨翰轩,张杰,王鑫,杨柳,蒙绍兴. 2019. 碳酸盐岩—膏盐岩共生体系白云岩成因及储盖组合. 石油勘探与开发, 46(5): 916-928. [Hu A P,Shen A J,Yang H X,Zhang J,Wang X,Yang L,Meng S X.2019. Dolomite genesis and reservoir-cap rock assemblage in carbonate-evaporite paragenesis system. Petroleum Exploration and Development, 46(5): 916-928] [10] 胡素云,石书缘,王铜山,刘伟,白斌,徐安娜,涂建琪,黄士鹏,姜华. 2016. 膏盐环境对碳酸盐岩层系成烃、成储和成藏的影响. 中国石油勘探, 21(2): 20-27. [Hu S Y,Shi S Y,Wang T S,Liu W,Bai B,Xu A N,Tu J Q,Huang S P,Jiang H.2016. Effect of gypsum-salt environment on hydrocarbon generation,reservoir-forming and hydrocarbon accumulation in carbonate strata. China Petroleum Exploration, 21(2): 20-27] [11] 金之钧,周雁,云金表,孙冬胜,龙胜祥. 2010. 我国海相地层膏盐岩盖层分布与近期油气勘探方向. 石油与天然气地质, 31(6): 715-724. [Jin Z J,Zhou Y,Yun J B,Sun D S,Long S X.2010. Distribution of gypsum-salt cap rocks and near-term hydrocarbon exploration targets in the marine sequences of China. Oil & Gas Geology, 31(6): 715-724] [12] 李永豪,曹剑,胡文瑄,陆现彩,范明,张殿伟,洪冬冬. 2016. 膏盐岩油气封盖性研究进展. 石油与天然气地质, 37(5): 634-643. [Li Y H,Cao J,Hu W X,Lu X C,Fan M,Zhang D W,Hong D D.2016. Research advances on hydrocarbon sealing properties of gypsolyte/saline rocks. Oil & Gas Geology, 37(5): 634-643] [13] 林畅松,李思田,刘景彦,钱一雄,罗宏,陈建强,彭莉,芮志峰. 2011. 塔里木盆地古生代重要演化阶段的古构造格局与古地理演化. 岩石学报, 27(1): 210-218. [Lin C S,Li S T,Liu J.Y,Qian Y X,Luo H,Chen J Q,Peng L,Rui Z F.2011. Tectonic framework and paleogeographic evolution of the Tarim Basin during the Paleozoic major evolutionary stages. Acta Petrologica Sinica, 27(1): 210-218] [14] 林良彪,陈洪德,淡永,彭勇民,邹灏. 2012. 四川盆地中寒武统膏盐岩特征与成因分析. 吉林大学学报(地球科学版),42(S2): 95-103. [Lin L B,Chen H D,Dan Y,Peng Y M,Zou H.2012. Characteristics and genesis of Middle Cambrian gypsum rock in Sichuan Basin. Journal of Jilin University(Earth Science Edition),42(S2): 95-103] [15] 林潼,王铜山,潘文庆,袁文芳,李秋芬,马卫. 2021. 埋藏过程中膏岩封闭有效性演化特征: 以塔里木盆地寒武系深层膏岩盖层为例. 石油与天然气地质, 42(6): 1354-1364. [Lin T,Wang T S,Pan W Q,Yuan W F,Li Q F,Ma W.2021. Evaluation of sealing effectiveness of gypsolyte during burial: a case study of the gypsolyte caprock in deep Cambrian,Tarim Basin. Oil & Gas Geology, 42(6): 1354-1364] [16] 刘丽红,高永进,王丹丹,白忠凯,张远银,韩淼. 2021. 塔里木盆地寒武系膏盐岩对盐下白云岩储层的影响. 岩石矿物学杂志, 40(1): 109-120. [Liu L H,Gao Y J,Wang D D,Bai Z K,Zhang Y Y,Han M.2021. The impact of gypsum salt rock on Cambrian subsalt dolomite reservoir in Tarim Basin. Acta Petrologica et Mineralogica, 40(1): 109-120] [17] 吕修祥,金之钧,周新源,皮学军. 2000. 塔里木盆地库车坳陷与膏盐岩相关的油气聚集. 石油勘探与开发, 27(4): 20-21. [Lü X X,Jin Z J,Zhou X Y,Pi X J.2000. Oil and gas accumulation related to evaporite rocks in Kuqa depression of Tarim Basin. Petroleum Exploration and Development, 27(4): 20-21] [18] 吕修祥,屈怡倩,于红枫,兰晓东. 2014. 碳酸盐岩盖层封闭性讨论: 以塔里木盆地塔中北斜坡奥陶系为例. 石油实验地质, 36(5): 532-538. [Lü X X,Qu Y Q,Yu H F,Lan X D.2014. Sealing capacity of carbonate cap rocks: a case study of Ordovician in northern slope of central Tarim Basin. Petroleum Geology & Experiment, 36(5): 532-538] [19] 穆龙新. 2017. 全球油气勘探开发形势及油公司动态. 北京: 石油工业出版社,10-50. [Mu L X.2017. Global Petroleum E & D Trends and Company Dynamics. Beijing: Petroleum Industry Press,10-50] [20] 沈安江,郑剑锋,陈永权,倪新锋,黄理力. 2016. 塔里木盆地中下寒武统白云岩储集层特征、成因及分布. 石油勘探与开发, 43(3): 340-349. [Shen A J,Zheng J F,Chen Y Q,Ni X F,Huang L L.2016. Characteristics,origin and distribution of dolomite reservoirs in Lower-Middle Cambrian,Tarim Basin,NW China. Petroleum Exploration and Development, 43(3): 340-349] [21] 王珊,曹颖辉,杜德道,王石,李洪辉,董洪奎,严威,白莹. 2018. 塔里木盆地柯坪—巴楚地区肖尔布拉克组储层特征与主控因素. 天然气地球科学, 29(6): 784-795. [Wang S,Cao Y H,Du D D,Wang S,Li H H,Dong H K,Yan W,Bai Y.2018. The characteristics and main controlling factors of dolostone reservoir in Lower Cambrian Xiaoerbulak Formation in Keping-Bachu area,Tarim Basin,NW China. Natural Gas Geoscience, 29(6): 784-795] [22] 王兆云,赵文智,何海清. 2002. 超压与烃类生成相互作用关系及对油气运聚成藏的影响. 石油勘探与开发, 29(4): 12-15. [Wang Z Y,Zhao W Z,He H Q.2002. Study on the interaction of overpressure and hydrocarbon generation and the influence of overpressure upon hydrocarbon accumulations. Petroleum Exploration and Development, 29(4): 12-15] [23] 魏国齐,朱永进,郑剑锋,俞广,倪新锋,闫磊,田雷,黄理力. 2021. 塔里木盆地寒武系盐下构造—岩相古地理、规模源储分布与勘探区带评价. 石油勘探与开发, 48(6): 1114-1126. [Wei G Q,Zhu Y J,Zheng J F,Yu G,Ni X F,Yan L,Tian L,Huang L L.2021. Tectonic-lithofacies paleogeography,large-scale source-reservoir distribution and exploration zones of Cambrian subsalt formation,Tarim Basin,NW China. Petroleum Exploration and Development, 48(6): 1114-1126] [24] 文华国,霍飞,郭佩,甯濛,梁金同,钟怡江,苏中堂,徐文礼,刘四兵,温龙彬,蒋华川. 2021. 白云岩—蒸发岩共生体系研究进展及展望. 沉积学报, 39(6): 1321-1343. [Wen H G,Huo F,Guo P,Ning M,Liang J T,Zhong Y J,Su Z T,Xu W L,Liu S B,Wen L B,Jiang H C.2021. Advances and prospects of dolostone-evaporite paragenesis system. Acta Sedimentologica Sinica, 39(6): 1321-1343] [25] 邬光辉,李浩武,徐彦龙,苏文,陈志勇,张宝收. 2012. 塔里木克拉通基底古隆起构造—热事件及其结构与演化. 岩石学报, 28(8): 2435-2452. [Wu G H,Li H W,Xu Y L,Su W,Chen Z Y,Zhang B S.2012. The tectonothermal events,architecture and evolution of Tarim craton basement paleo-uplifts. Acta Petrologica Sinica, 28(8): 2435-2452] [26] 吴海,赵孟军,卓勤功,鲁雪松,桂丽黎,李伟强,徐祖新. 2016. 膏盐岩对地层温度及烃源岩热演化的影响定量分析: 以塔里木库车前陆盆地为例. 石油勘探与开发, 43(4): 550-558. [Wu H,Zhao M J,Zhuo Q G,Lu X S,Gui L L,Li W Q,Xu Z X.2016. Quantitative analysis of the effect of salt on geothermal temperature and source rock evolution: a case study of Kuqa foreland basin,western China. Petroleum Exploration and Development, 43(4): 550-558] [27] 严威,邬光辉,张艳秋,杨果,娄洪,王孝明. 2018. 塔里木盆地震旦纪—寒武纪构造格局及其对寒武纪古地理的控制作用. 大地构造与成矿学, 42(3): 455-466. [Yan W,Wu G H,Zhang Y Q,Yang G,Lou H,Wang X M.2018. Sinian-Cambrian tectonic framework in the Tarim Basin and its influences on the paleogeography of the Early Cambrian. Geotectonica et Metallogenia, 42(3): 455-466] [28] 杨海军,陈永权,田军,杜金虎,朱永峰,李洪辉,潘文庆,杨鹏飞,李勇,安海亭. 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. [Yang H J,Chen Y Q,Tian J,Du J H,Zhu Y F,Li H H,Pan W Q,Yang P F,Li Y,An H T.2020. Great discovery and its significance of ultra-deep oil and gas exploration in well luntan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72] [29] 赵振宇,周瑶琪,马晓鸣,冀国盛. 2007. 含油气盆地中膏盐岩层对油气成藏的重要影响. 石油与天然气地质, 28(2): 299-308. [Zhao Z Y,Zhou Y Q,Ma X M,Ji G S.2007. The impact of saline deposit upon the hydrocarbon accumulation in petroliferous basin. Oil & Gas Geology, 28(2): 299-308] [30] 赵宗举,罗家洪,张运波,吴兴宁,潘文庆. 2011. 塔里木盆地寒武纪层序岩相古地理. 石油学报, 32(6): 937-948. [Zhao Z J,Luo J H,Zhang Y B,Wu X N,Pan W Q.2011. Lithofacies paleogeography of Cambrian sequences in the Tarim Basin. Acta Petrolei Sinica, 32(6): 937-948] [31] 朱光有,陈斐然,陈志勇,张颖,邢翔,陶小晚,马德波. 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21. [Zhu G Y,Chen F R,Chen Z Y,Zhang Y,Xing X,Tao X W,Ma D B.2016. Discovery and basic characteristics of the high-quality source rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21] [32] 朱永进,倪新锋,刘玲利,乔占峰,陈永权,郑剑锋. 2019. 裂后沉降期碳酸盐岩缓坡沉积响应及成储特征: 以塔里木盆地下寒武统肖尔布拉克组为例. 沉积学报, 37(5): 1044-1057. [Zhu Y J,Ni X F,Liu L L,Qiao Z F,Chen Y Q,Zheng J F.2019. Depositional differentiation and reservoir potential and distribution of ramp systems during post-rift period: an example from the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin,NW China. Acta Sedimentologica Sinica, 37(5): 1044-1057] [33] 卓勤功,赵孟军,李勇,王媛. 2014. 膏盐岩盖层封闭性动态演化特征与油气成藏: 以库车前陆盆地冲断带为例. 石油学报, 35(5): 847-856. [Zhuo Q G,Zhao M J,Li Y,Wang Y.2014. Dynamic sealing evolution and hydrocarbon accumulation of evaporite cap rocks: an example from Kuqa Foreland Basin thrust belt. Acta Petrolei Sinica, 35(5): 847-856] [34] Alonso R N,Jordan T E,Tabbutt K T,Wagonerdervoort D S.1991. Giant evaporite belts of the Neogene central Andes. Geology, 19(4): 401-404. [35] Chen X,Wei M Y,Li X B,Li M.2020. The co-relationship of marine carbonates and evaporites: a study from the Tarim Basin,NW China. Carbonates and Evaporites, 35(4): 122. [36] Hardie L A,Eugster H P.1971. The depositional environment of marine evaporates: a case for shallow,clastic accumulation. Sedimentology, 16(3-4): 187-220. [37] Hsu K J.1972. Origin of saline giants: a critical review after the discovery of meditterance. Earth-Science Review, 8(4): 371-386. [38] Hudec M R,Jackson M P A.2007. Terra infirma: understanding salt tectonics. Earth-Science Reviews, 82(1/2): 1-28. [39] Jackson M P A.1995. Retrospective salt tectonics. In: Jackson M P A,Roberts D G,Snelson S(eds). Salt Tectonics: A Global Perspective. AAPG Memoir, 65: 1-28. [40] Kinsman J J.1969. Modes of formation,sedimentary association and diagnostic features of shallow-water and supratidal evaporites. AAPG Bulletin, 53(4): 830-840. [41] Maley V C,Huffington R M.1953. Cenozoic fill and evaporate solution in the Delaware basin,Texas and New Mexico. Bulletin of the Geological Society of America, 64(5): 539-546. [42] Salih N,Mohammed A.2017. Characterization and modeling of long-term stresse-strain behavior of water confined pre-saturated gypsum rock in Kurdistan Region,Iraq. Journal of Rock Mechanics and Geotechnical Engineering, 9: 741-748. [43] Schmalz R F.1969. Deep-water evaporite deposition: a genetic model. AAPG Bulletin, 53(4): 798-823. [44] Schmalz R F.1970. Environment of marine evaporate deposition. Miner: Industrial, 35(8): 1-7. [45] Warren J K.2006. Evaporites: Sediments,Resources and Hydrocarbons. Berlin,Heidelberg: Springer. [46] Warren J K.2016. Evaporites: A Geological Compendium(2nd edition). Cham: Springer.