Discussion about the coupling relationship between the breakup of supercontinent and the large-scale manganese accumulation in China
DU Yuansheng1, YU Wenchao1, ZHOU Qi2, GUO Hua1, JIN Song3, LIU Zhichen4, HUANG Heng5, LIU Hai6, WANG Ping7, QI Liang8, XU Yuan1, XU Lingtong1, WANG Yuhang1, WANG Hanwen1
1 China University of Geosciences(Wuhan),Wuhan 430074,China; 2 Innovation Center of Ore Resources Exploration Technology in the Region of Bedrock,Ministry of Natural Resources of China,Guiyang 550081,China; 3 Geological Survey Institute of Hebei Province,Shijiazhuang 050081,sChina; 4 Geological Brigade 102 of Guizhou Province,Guizhou Zunyi 563003,China; 5 Geological Survey Institute of Guangxi Zhuang Autonomous Region,Nanning 530015,China; 6 Hubei Institute of Metallurgical Geology,Hubei Yichang 443000,China; 7 Henan Polytechnic University,Henan Jiaozuo 454000,China; 8 Chengdu University of Technology,Chengdu 610059,China
Abstract Sedimentary Mn carbonate deposits in China are accumulated in a large time scale and widely distributed. The metallogenic peaks are Mesoproterozoic Jixianian,Neoproterozoic Nanhuan and Sinian,Early Paleozoic Cambrian and Ordovician,Late Paleozoic Devonian,Carboniferous and Permian,and Mesozoic Triassic. Sedimentary Mn carbonate deposits are mainly distributed in stretching rift basin,including the Mesoproterozoic Yan-Liao Aulacogen in North China,the Nanhuan-Ordovician Nanhua Rift Basin,the Nanhuan intracontinental rift in northern Yangtze Block,the Sinian-Cambrian continental margin rift in northern Yangtze Block,Late Paleozoic-Triassic Youjiang Basin and the Xiang-Gui Aulacogen,the intracontinental trough in the western Yangtze Block(Shuicheng-Zunyi)and the trough in northwestern Yangtze Block. The source of the Mn carbonate deposit mainly comes from the deep hydrothermal fluid,which are then deposited in the shallow rift environment of suboxic deep water. The rift-type basins were formed during the breakup periods of the Columbia Supercontinent,the Rodinia Supercontinent and the Gondwana continent. There is an obvious coupling relationship between formations of the sedimentary Mn deposits and the breakup of supercontinents.
Fund:National Natural Science Foundation of China(No. U1812402)
About author: DU Yuansheng,born in 1958,is a professor and Ph.D. supervisor of China University of Geosciences(Wuhan). He is mainly engaged in the researches of sedimentology and geology of orogenic belt. E-mail: duyuansheng126@126.com.
Cite this article:
DU Yuansheng,YU Wenchao,ZHOU Qi et al. Discussion about the coupling relationship between the breakup of supercontinent and the large-scale manganese accumulation in China[J]. JOPC, 2023, 25(6): 1211-1234.
DU Yuansheng,YU Wenchao,ZHOU Qi et al. Discussion about the coupling relationship between the breakup of supercontinent and the large-scale manganese accumulation in China[J]. JOPC, 2023, 25(6): 1211-1234.
[1] 邓旭升,杜远生,余文超,吴开彬,卢树藩,张晗彬. 2020. “黔中隆起”和贵州晚古生代古地理演化及其对铝土矿的控矿作用. 古地理学报, 22(5): 872-892. [Deng X S,Du Y S,Yu W C,Wu K B,Lu S P,Zhang H B. 2020. ‘Qianzhong Uplift' and evolution of the Late Paleozoic palaeogeography and its control on formation of bauxite in Guizhou Province. Journal of Palaeogeography(Chinese Edition), 22(5): 872-892] [2] 董志国,张连昌,王长乐,张帮禄,彭自栋,朱明田,冯京,谢月桥. 2020. 沉积碳酸锰矿床研究进展及有待深入探讨的若干问题. 矿床地质, 39(2): 237-255. [Dong Z G,Zhang L C,Wang C L,Zhang B L,Peng Z D,Zhu M T,Feng J. 2020. Progress and problems in understanding sedimentary manganese carbonate metallogenesis. Mineral Deposits, 39(2): 237-255] [3] 杜远生,黄宏伟,黄志强,徐亚军,杨江海,黄虎. 2009. 右江盆地晚古生代—三叠纪盆地转换及其构造意义. 地质科技情报, 28(6): 10-15. [Du Y S,Huang H W,Huang Z Q,Xu Y J,Yang J H,Huang H. 2009. Basin Translation from Late Paleozoic to Triassic of Youjiang Basin and its tectonic significance. Geological Science and Technology Information, 28(6): 10-15] [4] 杜远生,黄虎,杨江海,黄宏伟,陶平,黄志强,胡丽沙,谢春霞. 2013. 晚古生代—中三叠世右江盆地的格局和转换. 地质论评, 59(1): 1-11. [Du Y S,Huang H,Yang J H,Huang H W,Tao P,Huang Z Q,Hu L S,Xie C X. 2013. The basin translation from Late Paleozoic to Triassic of the Youjiang Basin and its tectonic signification. Geological Review, 59(1): 1-11] [5] 杜远生,周琦,余文超,王萍,袁良军,齐靓,郭华,徐源. 2015. Rodinia超大陆裂解、Sturtian冰期事件和扬子地块东南缘大规模锰成矿作用. 地质科技情报, 34(6): 1-7. [Du Y S,Zhou Q,Yu W C,Wang P,Yuan L J,Qi L,Guo H,Xu Y. 2015. Linking the cryogenian manganese metallogenic process in the southeast margin of Yangtze Block to break-up of rodinia supercontinent and sturtian glaciation. Geological Science and Technology Information, 34(6): 1-7] [6] 杜远生,周琦,余文超,张亚冠,王萍,覃永军,庞大卫. 2018. 贵州南华纪—震旦纪沉积大地构造及其对沉积矿产的控制作用. 贵州地质, 35(4): 282-290. [Du Y S,Zhou Q,Yu W C,Zhang Y G,Wang P,Tan Y J,Pang D W. 2018. Sedimentary geotectonics and its control function of sedimentary mineral in Nanhua Period-Sinian Period in Guizhou. Guizhou Geology, 35(4): 282-290] [7] 杜远生,童金南,何卫红,袁爱华. 2021. 古生物地史学概论. 湖北武汉: 中国地质大学出版社,1-404. [Du Y S,Tong J N,He W H,Yuan A H. 2021. Introduction to Palaeontology and Historical Geology. Hubei Wuhan: China University of Geosciences Press,1-404] [8] 付勇,徐志刚,裴浩翔,江冉. 2014. 中国锰矿成矿规律初探. 地质学报, 88(12): 2192-2207. [Fu Y,Xu Z G,Pei H X,Wang R. 2014. Study on metallogenic regularity of manganese ore deposits in China. Acta Geologica Sinica, 88(12): 2192-2207] [9] 高林志,张传恒,史晓颖,周洪瑞,王自强. 2007. 华北青白口系下马岭组凝灰岩锆石SHRIMP U-Pb定年. 地质通报,26(3): 249-255. [Gao L Z,Zhang C H,Shi X Y,Zhou H R,Wang Z Q. 2007. Zircon SHRIMP U-Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geological Bulletin of China,26(3): 249-255] [10] 高林志,张传恒,尹崇玉,史晓颖,王自强,刘耀明,刘鹏举,唐烽,宋彪. 2008. 华北古陆中、新元古代年代地层框架SHRIMP锆石年龄新依据. 地球学报,29(3): 366-376. [Gao L Z,Zhang C H,Yin C Y,Shi X Y,Wang Z Q,Liu Y M,Liu P J,Tang F,Song B. 2008. SHRIMP zircon ages: basis for refining the chronostratigraphic classification of the Meso-and Neoproterozoic strata in North China old land. Acta Geoscientica Sinica,29(3): 366-376] [11] 胡俊良,赵太平,徐勇航,陈伟. 2007. 华北克拉通大红峪组高钾火山岩的地球化学特征及其岩石成因. 矿物岩石,27(4): 70-77. [Hu J L,Zhao T P,Xu Y H,Chen W. 2007. Geochemistry and petrogenesis of the high-K volcanic rocks in the dahongyu formation,North China Craton. 2007. Journal of Mineralogy and Petrology,27(4): 70-77] [12] 靳松,郭华,余文超,杜远生,马鹏飞. 2020. 燕辽坳拉槽古—中元古代裂谷盆地演化及其对锰矿沉积的控制作用. 古地理学报, 22(5): 841-854. [Jin S,Guo H,Yu W C,Du Y S,Ma P F. 2020. Evolution of Yanliao aulacogen in the Paleo-Mesoproterozoic and its control on manganese deposit. Journal of Palaeogeography(Chinese Edition), 22(5): 841-854] [13] 李怀坤,李惠民,陆松年. 1995. 长城系团山子组火山岩颗粒锆石U-Pb年龄及其地质意义. 地球化学,(1): 43-48,101. [Li H K,Li H M,Lu S L. 1995. Grain zircon U-Pb ages for volcanic rocks from Tuanshanzi Formation of Changcheng System and their geological implications. Geochimica,(1): 43-48,101] [14] 李怀坤,陆松年,李惠民,孙立新,相振群,耿建珍,周红英. 2009. 侵入下马岭组的基性岩床的锆石和斜锆石U-Pb精确定年: 对华北中元古界地层划分方案的制约. 地质通报, 28(10): 1396-1404. [Li H K,Lu S L,L H M,Sun L X,Xiang Z Q,Geng J Z,Zhou H Y. 2009. Zircon and beddeleyite U-Pb precision dating of basic rock sills intruding Xiamaling Formation,North China. Geological Bulletin of China, 28(10): 1396-1404] [15] 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李生,杨锋杰. 2010. 北京延庆高于庄组凝灰岩的锆石U-Pb定年研究及其对华北北部中元古界划分新方案的进一步约束. 岩石学报, 26(7): 2131-2140. [Li H K,Zhu S X,Xiang Z Q,Su W B,Lu S L,Zhou H Y,Geng J Z,Li S,Yang F J. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing,Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrologica Sinica, 26(7): 2131-2140] [16] 李怀坤,苏文博,周红英,相振群,田辉,杨立公,Huff W D,Ettensohn F R. 2014. 中—新元古界标准剖面蓟县系首获高精度年龄制约: 蓟县剖面雾迷山组和铁岭组斑脱岩锆石SHRIMP U-Pb同位素定年研究. 岩石学报, 30(10): 2999-3012. [Li H K,Su W B,Zhou H Y,Xing Z Q,Tian H,Yang L G,Huff W D,Ettensohn F R. 2014. The first precise age constraints on the Jixian System of the Meso-to Neoproterozoic Standard Section of China: SHRIMP zircon U-Pb dating of bentonites from the Wumishan and Tieling formations in the Jixian Section,North China Craton. Acta Petrologica Sinica, 30(10): 2999-3012] [17] 李江海,姜洪福. 2013. 全球古板块再造、岩相古地理及古环境图集. 北京: 地质出版社,1-127. [Li J H,Jiang H F. 2013. Atlas of Global Palaeo-plate Reconstruction,Lithofacies Palaeogeography and Palaeoenvironment. Beijing: Geology Press,1-127] [18] 刘超辉,刘福来. 2015. 华北克拉通中元古代裂解事件: 以渣尔泰—白云鄂博—化德裂谷带岩浆与沉积作用研究为例. 岩石学报, 31(10): 3107-3128. [Liu C H,Liu F L. 2015. The Mesoproterozoic rifting in the North China Craton: a case study for magmatism and sedimentation of the Zhaertai-Bayan Obo-Huade rift zone. Acta Petrologica Sinica, 31(10): 3107-3128] [19] 刘志臣,陈登,铁永洪,崔忠强,张远国,钟月丽. 2013. 贵州遵义锰矿成矿物质来源探讨. 地质评论, 59(S): 307-308. [Liu Z C,Chen D,Tie Y H,Cui Z Q,Zhang Y G,Zhong Y L. 2013. The source of metallogenic materials in Zunyi Manganese deposit,Guizhou Province. Geological Review, 59(S): 307-308] [20] 刘志臣,周琦,颜佳新,汪洋,陈登,钟月丽,秦先进. 2019. 二叠纪黔北裂陷槽遵义次级裂谷盆地结构及其对锰矿的控制作用. 古地理学报, 21(3): 493-502. [Liu Z C,Zhou Q,Yan J X,Wang Y,Chen D,Zhong Y L,Qin X J. 2019. Structure of North Guizhou rift trough basin during Permian and its control effect on manganese mine. Journal of Palaeogeography(Chinese Edition), 21(3): 493-502] [21] 陆松年,李惠民. 1991. 蓟县长城系大红峪组火山岩的单颗粒锆石U-Pb法准确定年. 中国地质科学院院报, 22: 137-146. [Lu S L,Li H M. 1991. A precise U-Pb single zircon age determination for the volcamics of Dahongyu Formation Changcheng System in Jixian. Bulletin of the Chinese Academy of Geological Sciences, 22: 137-146] [22] 毛景文,杨宗喜,谢桂青,袁顺达,周振华. 2019. 关键矿产: 国际动向与思考. 矿床地质, 38(4): 689-698. [Mao J W,Yang Z X,Xie G Q,Yuan S D,Zhou Z H. 2019. Critical minerals: international trends and thinking. Mineral Deposits, 38(4): 689-698] [23] 苏文博,李怀坤,Huff W D,Ettensohn F R,张世红,周红英,万渝生. 2010. 铁岭组钾质斑脱岩锆石SHRIMP U-Pb年代学研究及其地质意义. 科学通报, 55(22): 2197-2206. [Su W B,Li H K,Huff W D,Ettensohn F R,Zhang S H,Zhou H Y,Wan Y S. 2010. Zircon SHRIMP U-Pb dating of potassic porphyry in the Tieling Formation and its geological significance. Chinese Science Bulletin, 55(22): 2197-2206] [24] 田辉,张健,李怀坤,苏文博,周红英,杨立公,相振群,耿建珍,刘欢,朱士兴,许振清. 2015. 蓟县中元古代高于庄组凝灰岩锆石LA-MC-ICPMS U-Pb定年及其地质意义. 地球学报, 36(5): 647-658. [Tian H,Zhang J,Li H K,Su W B,Zhou H Y,Yang L G,Xiang Z Q,Geng J Z,Liu H,Zhu S X,Xu Z Q. 2015. Zircon LA-MC-ICPMS U-Pb dating of tuff from Mesoproterozoic Gaoyuzhuang Formation in Jixian County of North China and its geological significance. Acta Geoscientica Sinica, 36(5): 647-658] [25] 王登红. 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. [Wang D H. 2019. Study on critical mineral resources: significance of research,determination of types,attributes of resources,progress of prospecting,problems of utilization,and direction of exploitation. Acta Geologica Sinica, 93(6): 1189-1209] [26] 王剑. 2000. 华南新元古代裂谷盆地演化: 兼论与Rodinia解体的关系. 北京: 地质出版社,1-146. [Wang J. 2000. Evolution of the Neoproterozoic Rift Basin in South China and Its Relationship with the Breakup of Rodinia Supercontinent. Beijing: Geological Press,1-146] [27] 王剑,刘宝珺,潘桂棠. 2001. 华南新元古代裂谷盆地演化: Rodinia超大陆解体的前奏. 矿物岩石, 21(3): 135-145. [Wang J,Liu B J,Pan G T. 2001. Neoproterozoic rifting history of South China significance to Rodinia breakup. Journal of Mineralogy and Petrology, 21(3): 135-145] [28] 姚培慧,林镇泰,杜春林,王可南,宋雄. 1995. 中国锰矿志. 北京: 冶金工业出版社. [Yao P H,Lin Q Z,Du C L,Wang K L,Song X. 1995. Records of China's Manganese Ore Deposits. Beijing: Metallurgical Industry Press] [29] 余文超,杜远生,周琦,王萍,齐靓,徐源,靳松,潘文,袁良军,谢小锋,杨炳南. 2020. 华南成冰纪“大塘坡式”锰矿沉积成矿作用与重大地质事件的耦合关系. 古地理学报, 22(5): 855-971. [Yu W C,Du Y S,Zhou Q,Wang P,Qi L,Xu Y,Jin S,Pan W,Yuan L J,Xie X F,Yang B N. 2020. Coupling between metallogenesis of the Cryogenian Datangpo type manganese deposit in South China and major geological events. Journal of Palaeogeography(Chinese Edition), 22(5): 855-971] [30] 翟明国,吴福元,胡瑞忠,蒋少涌,李文昌,王汝成,王登红,齐涛,秦克章,温汉捷. 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, 33(2): 106-111. [Zhai M G,Wu F Y,Hu R Z,Jiang S Y,Li W C,Wang R C,Wang D H,Qi T,Qin K Z,Wen H J. 2019. Critical metalmineral resources: current research status and scientific issues. Bulletin of National Natural Science Foundation of China, 33(2): 106-111] [31] 张健,田辉,李怀坤,苏文博,周红英,相振群,耿建珍,杨立功. 2015. 华北克拉通北缘Columbia超大陆裂解事件: 来自燕辽裂陷槽中部长城系碱性火山岩的地球化学、锆石U-Pb年代学和Hf同位素证据. 岩石学报, 31(10): 3129-3146. [Zhang J,Tian H,Li H K,Su W B,Zhou H Y,Xiang Z Q,Geng J Z,Yang L G. 2015. Age,geochemistry and zircon Hf isotope of the alkaline basaltic rocks in the middle section of the Yan-Liao aulacogen along the northern margin of the North China Craton: new evidence for the breakup of the Columbia Supercontinent. Acta Petrologica Sinica, 31(10): 3129-3146] [32] 张连昌,张帮禄,董志国,谢月桥,李文君,彭自栋,朱明田,王长乐. 2020. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件. 吉林大学学报(地球科学版), 50(5): 1340-1357. [Zhang L C,Zhang B L,Dong Z G,Xie Y Q,Li W J,Peng Z D,Zhu M T,Wang C L. 2020. Tectonia setting and matallogenetic conditions of Carboniferous malkansu giant manganese belt in Western Kunlun orogen. Journal of Jilin University(Earth Science Edition), 50(5): 1340-1357] [33] 周琦,杜远生,袁良军,张燧,余文超,杨胜堂,刘雨. 2016. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用. 地球科学, 41(2): 177-178. [Zhou Q,Du Y S,Yuan L J,Zhang S,Yu W C,Yang S T,Liu Y. 2016. The structure of the Wuling rift basin and its control on the manganese deposit during the Nanhua Period in Guizhou-Hunan-Chongqing border area,South China. Earth Science, 41(2): 177-178] [34] 周琦,杜远生,袁良军,张遂,杨炳南,潘文,余文超,王萍,徐源,齐靓,刘雨,覃永军,谢小峰. 2017. 古天然气渗漏沉积型锰矿床找矿模型: 以黔湘渝毗邻区南华纪“大塘坡式”锰矿为例. 地质学报, 91(10): 2285-2298. [Zhou Q,Du Y S,Yuan L J,Zhang S,Yang B N,Pan W,Wang P,Xu Y,Qi L,Liu Y,Tan Y J,Xie X F. 2017. Exploration models of ancient natural gas seep sedimentary-type manganese ore deposit: a case study of the Nanhua Period “Datangpo”type manganese ore in the Conjunction area of Guizhou,Hunan and Chongqing. Acta Geologica Sinica, 91(10): 2285-2298] [35] 周琦,杜远生. 2019. 华南古天然气泄漏沉积型锰矿. 北京: 科学出版社,1-311. [Zhou Q,Du YS. Ancient Natural Gas Seep Sedimentary-type Manganese Ore Deposit in North China. Beijing: Science Press,1-311] [36] Calvert S E,Pedersen T F. 1996. Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Economic Geology, 91(1): 36-47. [37] Cawood P A,Wang Y J,Xu Y J,Zhao G C. 2013. Locating South China in Rodinia and Gondwana: a fragment of greater India lithosphere? Geology, 41(8): 903-906. [38] Cawood P A,Strachan R A,Pisarevsky S A,Gladkochub D P,Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: implications for models of supercontinent cycles. Earth and Planetary Science Letters, 449: 118-126. [39] Cawood P A,Zhao G C,Yao J L,Wang W,Xu Y J,Wang Y J. 2018. Reconstructing South China in phanerozoic and precambrian supercontinents. Earth-Science Reviews, 186: 173-194. [40] Cawood P A,Martin E L,Murphy J B,Pisarevsky S A. 2021. Gondwana's interlinked peripheral orogens. Earth and Planetary Science Letters, 568: 117057. [41] Dalziel I W. 1991. Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology, 19(6): 598-601. [42] Fan D L,Liu T B,Ye J. 1992. The process of formation of manganese carbonate deposits hosted in black shale series. Economic Geology, 87(5): 1419-1429. [43] Fan D L,Yang P J. 1999. Introduction to and classification of manganese deposits of China. Ore Geology Reviews, 15(1-3): 1-13. [44] Glasby G P. 2006. Manganese: predominant role of nodules and crusts. In: Schulz H,Zabel M(eds).Marine Geochemistry. Springer Berlin Heidelberg: 371-427. [45] Glasby G P,Schulz H D. 1999. Eh,pH diagrams for Mn,Fe,Co,Ni,Cu and As under seawater conditions: application of two new types of Eh,pH diagrams to the study of specific problems in marine geochemistry. Aquatic Geochemistry, 5(3): 227-248. [46] Hoffman P F. 1991. Did the breakout of laurentia turn gondwanaland inside-out? Science, 252(5011): 1409-1412. [47] Huckriede H,Meischner D. 1996. Origin and environment of manganese rich sediments with in black shale basins. Geochimicaet Cosmochimica Acta, 60(8): 1399-1413. [48] Johnson J E,Savalia P,Davis R,Kocar B D,Webb S M,Nealson K H,Fischer W W. 2016. Realtime manganese phase dynamics during biological and abiotic manganese oxide reduction. Environmental Science & Technology, 50(8): 4248-4258. [49] Li Z X,Zhang L,Powell C M. 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23: 407-410. [50] Li Z X,Li X H,Kinny P D,Wang J. 1999. The breakup of Rodinia: did it start with a mantle plume beneath South China. Earth and Planetary Science Letters, 173: 171-181. [51] Li Z X,Bogdanova S V,Collins A S,Davidson A,De Waele B,Ernst R E,Fitzsimons I C W,Fuck R A,Gladkochub D P,Jacobs J,Karlstrom K E,Lu S,Natapov L M,Pease V,Pisarevsky S A,Thrane K,Vernikovsky V. 2008. Assembly,configuration,and break-up history of Rodinia: a synthesis. Precambrian Research, 160(1-2): 179-210. [52] Liu Z C,Zhou Q,Liu K,Wang Y,Chen D,Chen Y M,Xiao L. 2021. Sedimentary features and paleogeographic evolution of the middle Permian trough basin in Zunyi,Guizhou,South China. Journal of Earth Science, 21(1): 1-39. [53] Lu S N,Yang C L,Li H K,Li H M. 2002. A Group of Rifting Events in the Terminal Paleoproterozoic in the North China Craton. Gondwana Research, 5(1): 123-131. [54] Maynard J B. 2003. Manganiferous Sediments,Rocks,and Ores. In: Holland H D,Turekian K K(eds). Treatise of Geochemistry,seconded. Sediments,Diagenesis,and Sedimentary Rocks Pergamon,Oxford, 7: 289-308. [55] Maynard J B. 2010. The chemistry of manganese ores through time: a signal of increasing diversity of earth surface environments. Economic Geology, 105(3): 535-552. [56] Maynard J B. 2014. Manganiferous sediments,rocks,and ores. In: Holland H D,Turekian K K(eds). Treatise of Geochemistry(2nd edition). Oxford: Pergamon,289-308. [57] Moores E M. 1991. Southwest US-East Antarctic(SWEAT)connection: a hypothesis. Geology, 19(5): 425-428. [58] Nicholson K,Hein J R,Bühn B,Dasgupta S. 1997. Precambrian to modern manganese mineralization: changes in ore type and depositional environment. Geological Society,London,Special Publication, 119(1): 1-3. [59] Polgári M,Hein J,Tóth A,Pál-Molnár E,Vigh T,Bíró L, Fintor K. 2012. Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years(U’rkút,Hungary). Geology, 40(10): 903-906. [60] Qi L,Cawood P A,Xu Y J,Du Y S,Zhang H C,Zhang Z K. 2020. Linking South China to North India from the late Tonian to Ediacaran: constraints from the Cathaysia Block. Precambrian Research,105898. [61] Rogers J J W,Santosh,M.2002. Configuration of Columbia: a mesoproterozoic supercontinent. Gondwana Research, 5(1): 5-22. [62] Roy S. 1988. Manganese metallogenesis: a review. Ore Geology Reviews, 4(1-2): 155-170. [63] Roy S. 1992. Environments and processes of manganese deposition. Economic Geology, 87(5): 1218-1236. [64] Roy S. 2006. Sedimentary manganese metallogenes is in response to the evolution of the Earth system. Earth Science Reviews, 77(4): 273-305. [65] Santosh M. 2010. Assembling North China Craton within the Columbia supercontinent: the role of double-sided subduction. Precambrian Research, 178(1): 149-167. [66] Wang J,Li Z X. 2003. History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Research, 122(1): 141-158. [67] Wang W,Liu S W,Santosh M,Deng Z B,Guo B R,Zhao Y,Zhang S H,Yang P T,Bai X,Guo R R. 2015. Late Paleoproterozoic geodynamics of the North China Craton: geochemical and zircon U-Pb-Hf records from a volcanic suite in the Yanliao rift. Gondwana Research, 27(1): 300-325. [68] Wittkop C,Swanner E D,Grengs A,Lambrecht N,Fakhraee M,Myrbo A,Bray A W,Poulton S W,Katsev S. 2020. Evaluating a primary carbonate pathway for manganese enrichments in reducing environments. Earth and Planetary Science Letters, 538: 116201. [69] Xu Y J,Liang X,Cawood P A,Zi J W,Zhang H C,Liu J,Du Y S. 2022. Revisiting the paleogeographic position of South China in Gondwana by geochemistry and U-Pb ages of detrital monazite grains from Cambrian sedimentary rocks. Lithos: 430-431,106879. [70] Yu W C,Algeo T J,Du Y S,Maynard B,Guo H,Zhou Q,Peng T P,Wang P,Yuan L J. 2016. Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin,South China. Palaeogeography,Palaeoclimatology,Palaeoecology, 459: 321-337. [71] Yu W C,Algeo T J,Du Y S,Zhou Q,Wang P,Xu Y,Yuan L J,Pan W. 2017. Newly discovered Sturtian cap carbonate in the Nanhua Basin,South China. Precambrian Research, 293: 112-130. [72] Yu W C,Polgári M,Gyollai I,Fintor K,Szabó M,Kovács I,Fekete J,Du Y S,Zhou Q. 2019. Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambrian Research, 322: 122-135. [73] Zhai M G,Liu W J. 2003. Paleoproterozoic tectonic history of the North China craton: a review. Precambrian Research, 122(1): 183-199. [74] Zhai M G,Santosh M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research, 20(1): 6-25. [75] Zhai M G,Hu B,Zhao T P,Peng P,Meng Q R. 2015. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: a study advance and review. Tectonophysics, 662: 153-166. [76] Zhao G C,Cawood P A,Wilde S A,Sun M. 2002. Review of the global 2.1-1.8 Ga orogens: implications for a pre-Rodinian supercontinent. Earth-Science Reviews, 59(1-4): 125-162. [77] Zhao G C,Sun M,Wilde S A,Li S Z. 2003. Assembly,accretion and breakup of the Paleo-Mesoproterozoic Columbia Supercontinent: records in the North China Craton. Gondwana Research, 6(3): 417-434. [78] Zhao G C,Cawood P A. 2012. Precambrian geology of China. Precambrian Research, 222: 13-54. [79] Zhao G C,Sun M,Wilde S A,Li S Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research, 136(2): 177-202. [80] Zhao G C,Wang Y J,Huang B C,Dong Y P,Li S Z,Zhang G W,Yu S. 2018. Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Science Reviews, 186: 262-286. [81] Zhou C M,Huyskens M H,Lang X G,Xiao S H,Yin Q Z. 2019. Calibrating the terminations of Cryogenian global glaciations. Geology, 47(3): 251-254.